cexas A&M University

Department of

o) QCEANOGRAPHY
i__\ﬂ Research Conducted through the
G\ Cevas A& M Kesearch Foundation
m COLLEGE STATION, TEXAS
(0:8)
O
£
<
-‘\‘
3 DYNAMICS OF DEEP-SEA MOORING LINES
) |
. Robert O. Reid
\ S e

This research was cammed out under the Naval Ship Systems Command
General Hydromechanics Research Program SR 009 01 C¢l. administered
by the Naval Ship Research and Development Center. Prepared under
the Office of Naval Research Contract Nonr 2119 (02).

DDC

UEL’;’JEWE [$] 26M Project 204

Reference 68-11F
B July, 1968




08 PSEERTRD I 1 TR P ey

Ao
&

&

o
L]

PRLO 0 vt Al i it LAt A e »
S A L g RS oy

Texas A&M University

College of Geosciences
Departiient of Oceanography

Coliege Station, Texas

Research Conducted Through
The Texas A & M Research Foundation

DYNAMICS OF DEEP-SEA MOO. *: LINES

by

Robert 0. Reid

This research was carried out under the
Naval Ship Systems Command, General Hy-
dromechanics Research Program SR 009 01
01, administered by the Naval Ship Re-~
search and Development Center. Prepared
under the Office of Naval Research Con-
tract Nonr 2119(02).

This document has been appr~ved for
public release and sale; ii. distri-
bution is unlimited.

Final Report
Texas A&M Project 204
.Reference 63-11F

July, 1¢68

e ——




- ii

kit AL Bt e 2O,

- b PREFACE

Bk
i

- The following report is the last of a series of five
réports dealing with research related to the problem of

deep-sea mooring lines.under the stated contract. These
studies were initiated in Januvary, 1959 with Dr. Basil W.
Wilson as principal invesﬁigator. A large part of the
efforts, as summarized in the first four reports, were
related to the problem of the equilibrium configuration.
The present study, which was been completed under the support
of the Texas A & M Research Foundation in fulfillment of the
original contract obligationsﬂ\deals with the dynamics of
deep-sea mooring lines. The primary emphasis is on
methodology in the solution of this problem.; ‘Although
some application is made, an extensive parametric study
is well beyond the scope of the present study.

Several publications based upon prior studies under
this contract have appeared in the literature and are
cited in the list of references.

The author wishes to express his appreciation for
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’ 4 the patience of the original sponsor. Hs is particularly
. grateful for the preserverance of his secretary, Mrs.
.- Florence G. McCully in coping with the lengthy set of

equations endlessly interwoven into the fabric of the
presentation. It is hoped that the reader is equally
presevering.

R. 0. Reid
Professor of Oceanography

G A S R B e e A S

College Station, Texas
July. 1968

R

S
-

P?Z%%Wsw i

|
i
!
‘ ~
{
i
a




- iii

ot vt HACHEHFPRIENY RSN [0 e ity

TABLE OF CONTENTS

PREFACE
LIST OF TABLES

e PP

LIST OF FIGURES
I: INTRODUCTION
1. Background and Scope
. 2. Crder of Presentation
I1. EQUATIONS OF MOTION OF MOORING LINES

1. Assumptions

' AN
1 ERSTERIE SR BTN () Qngovien S akostery IO B3 5 PG i %

2. Material Coordinate and the Vector
Equation of Motion

3. Hydrodynamic Forces due to the Fluid

4, Alternative Form of the Equation of
Motion

5. End Condi’ .,ns - Vessel Motion

. III. STRESS~-STRAIN RELATIONS FOR ROPES AND STRANDED
CABLES

1l. Known Properties

2. A Simple Maxwell Model

3. Generalization of the Maxwell Model
4

. The "Saturation" Relation

5. Hysteresis for Nylon Rope

6. Summary ané Possible Further
Generalization

B U — PR e P o,

Page
ii
vi

vii

10
14

21
23

Byieis il

R R T T Y

RYERLTY; ST




R

[

N T

¢ Ld
et L a Y

R AL DLt

i

'
) srs a3 et e i) BTN R

Lt x e — ]
'

O

v.

vI.

1.
2.

iv

NERGY CONSIDERATIONS

Energy Equation for a Mooring Line

Energy Supply and Loss for the Line

MOORING LINE EQUATIONS IN CHARACTERLISTIC FORM

8.

LINEARIZED PERTURBATIONS RELATIVE TO A COPLANAR

W -

Geometrical consideraiions

Kinematical Relations Involving the
Dependent Variables

Equations of Motion in Natural Coordinates

Characteristic Form of the Mooring Line
Equations in Natural Coordinates

Magnitude of the Signal Speeds

Characteristic Form of the Mooring Line
Equations in Cartesian Coordinates

Numerical Procecdure Using the Method
of Characteristics

Generalized Upper-End Condition

CONFIGURATION

Dynamic Equilibrium State

Quasi-Lirear Perturbation Equations
Associated Perturbation Energy Eocuation

Statistical Considerations of the Drag
Force

Perturbations of a Nylon Mocoring Line
about a Straight Equilibrium Con-
figuration

Case A. Transverse Mcdes (U cos § > 50)

67
70

- T5

80

92

100
113

136
137

—————————— e

ap——




+

6.

REFERENCES

Case B. Transverse Modes (U cos § < 0.50) 148

Case €. Longitudinal Modes

Perturtations of a2 Nylon Mooring Line
Relative to a Curved Equilibrium Con-
figuration

APPENDIX A, EQUATIONS OF MOTION OF VESSEL

APPENDIX B. DERIVATION OF THE CHARACTERISTIC

APPENDIX C

FORM OF THE MOORING LINE EGUATIONS

. TRANSFORMATION OF TuE CHARACTERISTIC

EQUATIONS TO CARTESIAN FORM

APPENDIX D. MATRIX OF COEFFICIENTS FOR THE

NUMERICAL PREDICTION RELATIONS

LIST OF SYMBOLS

158

165
174
177

186
195

199
207

‘
s
R VR, ST ST AR SANNNCUS | e A BRSO k) SRR RGNS

DA SRR

IR

b AT o

S

_d . .




i AR . MR e LR

1
H
I
1
x5
|
<3
<3
s
S
1
'S

B

P (T
«».
b,

w v e ety cw R s
1

Table

vi

LIST OF TABLES

Hycteresis in half-inch nylon rope at
mean tension of 2000 1bs

Maximum signal speeds

Approximate statistics for transverse
modes in the equilibrium plane

.

i

E

,

¢

{

i

i

{

§

H

i

i

§

H
LN
o s S e e+ ¢ et <t e < e e et




gy

AT

S

3
Ird

TR T

Figure

LIST OF FIGURES

Schematic of mooring line.

Schematic illustrating terms employed
in the upper end condition.

Repeated load-elongation tests for mooring
line materials: (a) and (b) steel-wire
ropes; (c) and (d) coir fiber ropes (after
Wilson, 1967).

Record of dynamic load-strain tests for
one-half inch diameter nylon rope (after
Paquette and Henderson, 1965).

Schematic of a simple visco-elastic

Maxw§11 model (symbols are explained in the
text).

Idealized load-strain process for the
Maxwell model; the slope of lines OA and

CB is (K, + K, )3 the slope of line OB is K,.

Hysteresis ellipse for simple harmonic
cycling of the Maxwell material.

Relative hysteresis versus a non-dimensional

frequency parameter for simple harmonic

cycling of the Maxwell material at fixed AT.

Apparent spring coefficient for cne~half

inch diameter nylon rope versus mean tension,

based upon tests by Paquette and Henderson
(1965) at + 180 1b cycling amplitude; full
line represents a least square linear
regression,

e TG

Page

11
a7
33
34
36

36

4o

4o

50

PR

L

.
C
:
g
i
:

ve abwl o

AR ik K] G Nk IR SR

MRS ANA  HIOSORE AL
Vo

PR

I

Tt gl AR AN
W R




.
R ek LI

i} d‘-’;s‘ 7 HIPLF Pt Faets o

PRI YRS A S MEE )

e e ‘»«‘u ot et b A BT
1

[T

Figure
10

e

11

o mashae .

12

13

14

15

2 ity A

16

17

18

19

viii

Schematic illustrating the "saturation"
curve 0OSU in the load-strain diagran.

Schematic of dynamic overloading in the
vicinity of the “saturation" curve.

Relative strazin (log scale) versus elapsed
time, illustrating the creep phenomenon
near the "saturation" curve (based ugon
data of Paquette and Henderson, 1965).

Hysteresis (H) versus amplitude of cyclic
loading (AT) for one-half inch diameter
nylon rope; circled points represent
measurements by Paguette and Henderson
(1965); dashed line is based upon the model
discussed in the text.

Relative transfer function versus frequency
for the generalized visco-elastic model

governed by (73) and (74) for the case
n -2, =K2, and Ta =101‘1.

Schematic illustrating the local coordinate
system for a mooring line and its relation to
a fixed Cartesian frame of reference.

Schematic of the characteristic paths in
the discrete s,t grid.

Schematic illustrating special conditions
for the characteristic paths near the end
points of the system.

v/o versus U cos g/c based upon a
Gaussian stochastic model for drag force.

Illustration of the attenuation of ¢ for
transverse waves under the condition of
g >27Ucos g.

Page

54

57

61

66

T4

102

105

135

157

>

L s o S

ALY WAL ik bl




e —
#
& -
EE -

i o - ' ¥
L E 2
3 :
=3 Z
E Z
k-

27

| :
3 I. INTRODUCTION §
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3] 1. Backaround and Scope i
~§ m— 3"
“ &
¥ The problem considered in this report dezls with H
't H
% the motions of and tensions within a quasi-elastiz mooring ;
E line which is anchored at the sea floor in oceanic depths %
F * . S
Eg while attached to a ship or buoy at or near the sea :
é% ) surface and suciect to the influence of time varying é
3 currents. This is a natural extension of the many pre- :
?: vious studies dealing with the equilibrium configuration

i of an &nchored cable in the presence of steady, coplanar i

currents. The mooring motion problem has received much
less attention.

One of the more recent investigations of the

L Y

equilibrium problem is that of Wilson (1964, 1965)*

in which the effect of vertical shear of the current is

included (in the second of the cited papers). A com-

prehensive summary of previous studies related to the
equilibrium configuration problem is given by Wilson (1964)
and will not be repeated here. The results of such
investigations of the equilibrium configuraticn of

mooring lines serve as a useful base on which one might

order by author at the end of this report.
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superimpose a dynamic perturbation theory related to
departures of the current from its mean state.

In the last decade there has been increased interest
in the general mooring motion problem, both in connection
with the mooring of vessels in the deep sea and with the
use of surface and subsurface anchored buoys, which serve
as platforms for oceanographic and/or meteorological
measurements. Recent studies which are particularly
germane to the mooring motion problem are those of
Whicker (1958), Walton and Polacheck (1960), Polacheck,
et al. (1963), Paquette and Henderson (1965), and Fofonoff
(1965, 1966). Although not directly related tc the mooring
problem, the paper of Zajac (1957) on the dynamics of
laying and recovery of submarine cable should not be over-
looked.

An important aspect of the problem of the trausient
mouring line, which does not enter directly into con-
siderations of the equilibrium configuration, is that of
the elastic and anelastic properties of the mooring line.
Although the qualitative features of the stress-strain
processes in stranded cables and ropes are well known,
the available information is rather deficient in a

quantitative sense. Moreover an adequate thecry of the

time-dependent properties of a rope or stranded cable
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is lacking. Such a theory should be able to allow for
such phenomena as creep under nearly constant load,
time-dependent relaxation of elastic strain under nc load
and hysteresis under conditions of cyclic loading.

In a recent paper by Wiison (1967) a summary of some

of the important properties of nylon and coir ropes and of

stranded steel cables is presented. This includes in-
formation in regard to the weight per unit length in
water, the dymamic modulus of elasticity (which is a
function of the mean load) and the permanent or an-
elastic strain (which depends upon the maximum tension
that the material has previously experienced). Quantita-
tive measurements in regard to hysteresis and: creep, as
well as dynamic modulus of elasticity for nylon rope,
ﬁnder—cyclic loading at various mean tensions, have been
carried out recently by Paquette and Henderson (1965).
However, the influence of hysteresis was not allowed .
for in their transient state analysis of a moored buoy.
An attempt is made in the present study to include the

hysteresis phenomenon by adopting a time-dependent model

for the physical properties of the mooring line, consistent

with the above information. This is one of the new aspects

of the present theory.
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The dynamical model adopted in this study allows for
three degrees of freedom of displacement of each material
point of the mooring line in response to currents, which
are not necessarily in the same direction at all depths,
and/or in response to three-dimensional motions of the
floatation unit (ship or buoy) to which the mooring line
is attached. The mooring line is regarded as completely
flexible but extendable (both in the elastic and anelastic
sense). Hysteresis and relaxational phenomena related to
the time-~dependent stress-strain processes are admitted
via a generalized, Maxwell type, visco-elastic model of
the physical behavior of the mooring line. This model in-

corporates a "memory effect”, refiecting the influence
of the prior history of the stress-strain process.

The dzmping of longitudinal transient oscillations
of the mooring line is related primarily to the hysteresis
properties of the line. On the other hand, the damping
of transverse oscillations is primarily related to the
mechanical "radiation" of energy to the fluid through
the action of hydrodynamic form drag, which is dependent
upon the motion of the mooring line relative to the fluid.
These two effects are considered to be the dominant
mechanisms for damping in the present theory. Specifically,
the tangential skin drag on the cable (Reid and Wilson,

1963) is regarded as negligible compared with the normal
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form drag. Moreover, as in most other studies of cable
3 dynamics, thermal effects are not considered, nor is the
influence of hyirostatic rressure on the properties of ) ;

g the cable (this being unknown at the present time).

2. Order of Presentation

(v e
IR L

. Within the framework of the above restrictions, a
"general" theory of the three-dimensional mooring line

3 dynamics is set forth. The presentation starts with a

formulation of the equations of motion of the mooring

line in vector form and a discussion of the hydrodynamical

[ fluid forces on the line. This is followed by a dis-
cussion of the time-depencent stress-strain properties of
ropes and stranded cables and presentation of an

. anelastic model. The implications of this model in
respect to the dynamic modulus of elésticity and

] hysteresis are then compared with the data of Paquette

- % and Henderson (1965) and Wilson (1967).

t§§ A general consideration of the energy conservation

relation for the system is presented. The damping effects

associated with both form drag and internal h;;teresis

are displayed explicitly along with the energy supply

terms due to work on the mooring system at its boundaries.

L
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In the section which follows, the, component eyuations

of motion of the mooring line are given explicitly in a

%
a
“
5
i
;
1
H
.

natural coordinate system similar to that suggested by

Zajac (1957), which is based on the local orientation of
the mooring line. This system has the advantage of
facilitating the evaluation of the normal drag force on
4 the mooring line. Kinematical compatibility conditions :
are derived which relate the component velocities of the
mooring line to other dependent parameters characterizing
the cable orientation and strain. The system of equations
are of quasi-linear, hyperbolic type and accordingly
can be recast in the so-called characteristic form
% (Freeman, 1951). The latter form has the advantage

that a stable numerical solution of the mooring line

C e e o

configuration at any time +t, starting with an arbitrary z

R I

initial three-dimensional configuration is greatly

facilitated. The characieristic form of the basic

[apEP—"

i i - relations also clarifies the roles played by the trans-
verse and longitudinal modes of motion of the nooring
P line and hence adds to our understanding of the mooring
line dynamics. The numerical methocd of solution via

the method of characteristics is discussed.
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For certain problems the linearized equations of
motion of the mooring line are of advantage. These
equations are set forth in a subsequent section and
some examples of their use for small perturbations of
the mooring line from a straight equilibrium state are
discussed.

The use of the perturbation approximation is then
extended to the more general case where the equilibrium
configuration of the mooring liine is a curved line in the
vertical plane. In this case the longitudinal and
transverse modes of oscillation of the mooring line
relative to the equilibrium state are coupled due to the
curvature. The linearized perturbation approximation
is useful in respect to considerations of the stochastic
aspects of the response of the mooring line to irratic
motion of the floatation unit to which it is attached.
An application of the method is made for the case where
the motion of the floatation unit is prescribed in
terms of a stochastically stationary time sequence

with stipulated variance spectrum.
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II.

EQUATION OF MOTION OF MOORING LINES

1. Assumptions

The primary assumptions in the present analysis

concerning the dynamics of a mooring line are as

follows:

a.

The mooring line is treated as perfectly
flexible, i.e., it is supposed that the
line cannot support shearing stresses
normal to the line;

Torsional strains in the line are not
considered, 1t being assumed that there
is no effect of such strains on the
longitudinal or transverse displacements
of the line;

Longitudinal skin drag on the line is
neglected compared with normal drag
associated with relative fluid motlon
past the line;

It is considered that the mooring line is
fixed at its lower end; i.e., it does not

drag anchor;

'
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e. It is supposed that the longitudinal

PTUr N

strain in the line is related to the
axial tension and its time history only,
thermal strains and exchange of heat with
the environmental fluid being ignored;

f. It is assumed that radial strain of the

line is related directly to the longitudinal
strain and is independent of the pressure
exerted by the surrounding fluid;

g. Finally the Coriolis force on the mooring

line is considered altogether negiigible
compared with other forces.

In the general analysis, no restriction is imposed
on the nature of the current acting on the mooring line.
Accordingly allowance is made for three degrees of
freedom of displacement of any material point of the
line. 1In general the mooring line is a three-dimensional
curve at any instant. However, certain special cases

will be considered in which the equilibrium configuration

lies in a vertical plane.
Assumptions (e) and (f) are imposed largely in view

of the limited state of knowledge in regard to the physical

and thermal properties of typical mooring line materials.
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The radial strain is needed only in respect to the
evaluatioa of the buoyancy and normal drag force on

the line, which depends on its effective diameter among

other factors.

2. Material Coordinate and the Vector Equation of Motion

Consider a mooring line which is securely anchored
at point O on the sea bed (Figure 1). Let P be any
material point on the axis of the mooring line.* Let ;
denote the position vector of P with respect to anchor
point O as a reference. Clearly the mass, M, of line
between O and P is conserved regardless of the
dynamic state of the line. One could accordingly adopt
M as a logical material coordinate of the point P.
However, it is more customary to employ an arc length
to identify the point P. In the present analysis we will
let s denote the arc length between the two material
points O and P of the mooring line in its original,

completely relaxed state, prior to any permanent strain.

We also define m as the mass per unit length at s

in the same stale, such that

* A list of symbols appears at the end of this
report for convenience t» the reader.
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% i : M= X m(s) ds, (1)
3 °

é % i in which m (for a tapered line) may in genzral depend
% - on s. In this sense s 1is merely an alias of M,

; % Note that s 1is not to be confused with the actual
- arc length, 0, of the line between O and P in its
; ’é general strained state. In general o¢ > s. Moreover

z % the mass per unit actual length under strained conditions
2 é will generally be less than m, and is equal to

g ‘ g m ds/do.

% % All dependent variables such as }, g, etc. will be
é 7 é regarded as functions of the independent variables s
é%% and t. To avoid confusion with ¢ we will hereafter

E %—% refer to s as the material codfdinate.

E“é % The vector velocity of any material point of

% § ! the line will be denoted by % and is related to

%g ;.'(s:t) by

¥ = ar/ at. (2)

f The vranslational momentum of the line between O and

? ; is accordingly given by

3 s

E J m % ds.
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Let T denote the vector tension at P and %o
the vector tension at 0, both taken in the sense cf
increasing s along the line. These tensile loads
are, in view of assumption (a), tangent to the axis of
the line at the points in question. Let k denote the
vertical unit vector (upwards) and g the acceleration

due to gravity such that in the absence of fluid the

line between O and P has the weight - M g k or

: .
- m g k ds.
!

Finally let F denote the residual surface force acting

on the line between O and P due to the action of
the surrounding fluid.

Application of Newton's law, bearing in mind
assumptions (a) and (g), then leads to the relation

S

9/dt i m 9 ds = T - &o - mg k ds + F. (3)

Qt—atn

Now m is independent of t and T_=T (o,t),

so it follows from (3) by differentiating with respect

to s that
m OV/dt = 3T/ ds - m g k + }’ (4)
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in which T has the direction of the vector 8}/ Js

and f = OF/ds.

3. Hydrodynamic Forces Due to the Fluid

In the absence of any motion of the fluid or of

the mooring line, the force F reduces to the static
Archemedian buoyance force, B, given by

B = gk | pA do ()

o*—-0Q

. which p is the fluid density (mass per unit volume)
and A 1is the cross-sectional area of the material of
the line at s under strained conditions. The buoyancy

per unit material coordinate is accordingly given by

=hy ¥
i
>
9
Il
huie]
(q
=
>
(o %4
3
P
Pl
N
N

Ffor simplicity it wiil be supposed that p 1is a

constant. However A and 00/ds can in general

- vary with s or t.

In the presencz of motion of the fluid relative to

the mooring line, an additional dynamic force can occur.

This is associated with anomalies of pressure distrivution

around the surface of the immersed line. Such pressure
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anomalies can be created by acceleration of the fluid
and/or by acceleration of the line through the fluid.
In addision, at moderate to large Reynolds number, a
wake phenomenon can exist on the lee side of the line,
which leads to a form drag effect above and beyond the
influence of acceleration. Also it is well known that
periodic vortex shedding, which occurs at moderate
Reynolds number, can lead to an alternating lateral force
on the line (normal to the relative current) at a fre-
quency deperdent uporn the the Reynolds number (Strouhal
frequency).

The drag force, %d’ per unit material coordinate

is presumed to be of the form
£fq = (1/2)p cq D |Un - vnl (U, - V,) 99/0s, (7)

where D 1is the effective diameter of the line at
position s and time t, cd is the drag coefficient

which is a function of the Reynolds number associated
with the relative speed, %n is the comp?nent o% %
normal to the mooring line at s,t and Un is the
component of the fluid velocity ﬁ normel to the mooring

line at s, t*, The above relation gives a vector force

* Actually U is the fluid velocity that would
exist in the absence of the mooring 1line.
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normal to the line at s, t, the tangential skin drag

being negleczed. Values of ¢4 for normal drag on

stranded cable, as a function of the Reynolds number,

are summarized by Wilson (1964). The tangential drag

coefficient is of the order of only one per cent of that

for normal drag for usual ranges of Reynolds number

(see Wilson, 1964 or Reid and Wilson, 1963). Accordingly

the omission of tangential skin drag is not considered

serious. The vector Un can be expressed in tha form

>

n—UfTUT (8)

~

where ¢ 1is a unit vector tangent to the axis of the

~

mooring line at s, t and U =7 + U. A similar

relation of course holds for ﬁn’ The unit vector ;

is related to } by the relation

A
n
&%

aﬁ
- AL (9)

The effect of vortex shedding can be simulated by

allowing an oscillatory ccmpcnent of fd normal to the

direction of %d and the local vector «. For the

o 1 O S - 28 M2 - .. . MY e e e m e e - -
evaiuaiLion ol e Lrourial irreguerncy [V

e o b m I -
given Reynocids

number, see for example Schlichting (1960). The amplitude
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of the resulting tianczverse, alternating force is
presumably of the order of magnitude of ten per cent

of the local mean value of %d’ If we let 1n denote the
ratio of the amplitude of lateral force to the drag orce

and let w. be the Strouhal frequency, then the alter-

s
nating lateral thrust per unit length due to vortex
shedding can be approximated by

"~

£, = n1 X4 cos (w5t +3), (10)
where § 1is an arbitrary phase angle.

To the above drag force, which can exist under
steady relative motion, we must allow for the possibility
of an added inertial force. Consider for the time being
that the fluid motion & (away from the influence of the
mooring line) is steady, but that the mooring line is
accelerated in a direction normal to the line like a
rigid cylinder. In this case a portion o0f the fluid
in the neighborhood of the line must also be accelerated,
thus leading to an effective retarding force on the line.
The magnitude of this force per unit iength of line can
be expressed as - m, 2 where a, is the acceleration

n

normal to the line and m, is the effective added mass

of fluid being accelerated at the rate a,. If the line

A p W
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v experiences an acceleration tangential to the line and if
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v viscous effects are ignored then there will be essentially :

no acceleration of the fluid if end effects are also

ignored (very long line). Thus we should expect the
inertial force to be highly directional, like the drag ¥
i force.
] For a general acceleration of the line but with 3 -

steady, we propose the following expression for the :

inertial force per unit length due to the presence of

DT Ea ats et Wit SO R T UM S

the fluid
2 £l = -m (3V/dt - 1 dV¢/3t) , (11)
E
3 -~ A
g where V_ =V - 1, this being the tangential component
% é i of the mooring line velocity at s, t. The above relation .

i IS

§ D is not the only possible choice for f{. Other logical

choices are

-m [ L - T (W) - T

A A L R LRt

and

Y

- m_ 33t V-7 9;) .

If 1 were independent of time then each of the three :

>~

possible forms yield identical values of f' . Thus
i
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the differences result only from terms involving 97/dt,
which represents a turning rate associated with the
local orientation of the axis of the mooring line. Of
the above three possible forms for }i (for steady &),
only that given by (11) leads to a physically acceptable
energy equation for the system as we will see in a later
section. The choice of relation (11) is justified pri-
marily on this basis.

In the more general case where the velocity of the
fluid, 6 (in the absence of the mooring line) is not
steady, then the acceleration term ba/Et will contribute
to the inertial force. I1Its effect, above and beyond
that of b%/Bt, is analysed as follows. In the absence
of the mooring line, the fluid occupying the position
of the mooring line would experience a force pA 090d/ds
aﬁ/at, per unit s, where A 00/ds represents the
volume per unit s. This force exists by virtue of the
pressure gradient required to produce the acceleration
B%/at. In the presence of the mooring line, a disruption
of the flow occurs in its vicinity and this introuuces
an added inertial force similar to that caused by

accelerating the mooring line through the fluid. The

added inertial force is taken as

e

|
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m {(3dU/ot - 7 aUT/at) ,
a
by analogy with (11). Thus in the absence of any

acceleration of the mooring line the inertial force

per unit of s 1is considered to be given by

£! = p A d0/ds /3t
+m (30/3t - 1 dU_/ 3t) . (12)

The total inertial force per unit of s exerted
by the fluid, in the presence of acceleration of the
fluid as well as acceleration of the mooring line, is
accordingly taken as the sum of the right hand
sides of (11 and (12).

The added mass coefficient m, per unit s can

ve expressed in the rorm

m = pAc, 90/3s (13)

where ca is a non-dimensional added mass coefficient.

The theoretical value of c, for pure potential fiow

around a circular cylinder according to Lamb (1945)

o
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is exactly unit. This value applies for very small

e T e S —— T e

Reynolds number. For large Reynold number, the value

of ¢ is generally somewhat less than unity.

a

4, Alternative Form of the Equation of Motion

The total force per unit material coordinate due

to the fluid is given by

0
Il
>
U‘H’
+
]
ol
+
(%)
+
]
+
.

p Y 20 PN

(%)

Making use of (6), (7), (10), (i1), (i2), and (14) in

(4) and combining terms involving the acceleration

of the mooring line yields

a ~
» I\ . New " .

(m + my) ovV/ot - m_ T OVr/dt =

where w 1is the net weight per unit

w=(m-m) g

- ~

s given by

OT/0s - wk + R, (15)

(16)

in which m, is the displaced mass of fluid per unit s

d

mg = p A 90/0s.

(17)
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The residual fluid force R 1is given by

- P [ L
T e ST TP L RIS 3

;1 = %,Cd D%‘g‘ lf]n - {rnl [1+ Ncos (wgt + 8) ;X] ({In - {fn)
+ (md +m) -3:% - m, ; g‘i_-r’ . (18)
It will be recalled that |
m o=c m (19)
and
bh -,
{rn ST v, (20)
where U, = U - ; and V7 = {f . ; Moreover, {I, ;
and d06/0s are related to T as follows
v - a;/at (21)
2 = %ﬁ / %:- (22)
30 2y (23)
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The vector tensile force can be eXxpressed as
T = T (24)

where T 1is the scalar tension at s, t and is related
to the longitudinal strain (30/ds - 1) by an equation
of state appropriate to the particulzr mooring line
concerned. This will be considered in some detail in a
later section.

The dependent variables }, %, ;, % and ¢ are
sought as functions of s and t for given initial
and end conditions. The velocity ﬁ is understood to
be a prescribed function of r and t. Its dependence

on s 1is not given explicitly but is implied through

the dependence of r on s.

5. End Conditions - Vecsel Motion

At the anchor point for each mooring line we require
simply
r (0: t) = 0, (25)

which implies in turn that v (o, t) also vanishes.

We wilt restrict our analysis to mooring lines
without any intermediate attacnments between the anchor
and the surface vessel to which each is secured. Let

L denote the material coordinate ac¢ the point of

.
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aitachment of the given mooring line to the vessel (i.e.,

L 1is the original unstrained total length of the mooring

E SRR (R L w1

LN E e et s Wb R et o A BT 3 L

line). A possible simple end ccndition at s =L is

to specify V (L, t) as a prescribed function ot time,

This together with specified initial values of r and

-~

V versus s 1is admissible from a mathematical point of

P NI

view. However, from a physical point of view, it does

not seem rational to specify the motion of the moored
vessel a priori. Clearly the action of the mooring line
j plays a role in constraining the vessel's motion and
: indeed can ‘introduce. natural frequencies of oscillation

g in addition to those which are relevant to an unmoored

i vessel. The unmoored vessel, of course, possesses
distinct natural frequencies for roll, pitch, and heave

] only. The constraint imposed by the mooring line (or

EARCSAS AL RMANLIGAG $2 i pvt iy bty e ol g sl ok it
st

% lines) can lead ic additional natural frequencies in

g surge, sway, and yaw (O'Brien and Muga, 1963).

AT Ll Pl it

é % Thus it would be desirable to deduce the motion

of the moored vessel itself in terms of the hydrodynamic

{ : forces acting on it, together with the constra;ning effect
j ; of the mooring line. This implies that r (L, t) and

| % (L, t) for the mooring line (or lines) are related

; by an appropriate differential egquation in which the

wave action and/or steady current acting on the vessel

should enter as the prescribed exciting force. The

2 ok B ek MM M s ¥ b
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approach employed here is a compromiszs in which the motion
of the vessel in the absence of the mooring line (the
potential motion) is prescribed rather than the exciting
forces. This of course requires the specification of six
scalar functions of time corresponding to the six degrees
of freedom of moticn for a rigid vessel. Typical measure-
ments of roll, pitch, and heave for large vessels underway
in a seaway are given, for example by Gover (1955).
Measurements of all six motions for a large moored vessel
are presented by O'Brien and Muga (1963).

Approrimate relations connecting the motion of a
moored vessel with the prescribed potential motion for
given mooring conditions are derived in"Appendix A
based upon the linearized equations of motion of the type
employed by St. Denis and Pierson (1955), but allowing
for the constraint imposed by the mooring iins (or lines).
Allowance is made for torque exerted by the mooring lines
as well as the constraining force since in general the
attac.ament of a given mooring line is not located at the
center of the mass of the vessel. The resulting equations
are valid for small translational and rotational displace-
ments of the vessel. These relations are summarized
below.

Let ;k denote the position vector of the point

of attachment on the vessel of mooring line k relative

G sn TelFas .
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to the anchor point of mooring line k. Let ik denote
the separation vector from the vessel's center of mass (C)
to the attachment point of mooring line k (Fig. 2).
The vector Bk has constant magnitude but varies in
direction dependaing on the angular displacement of the
vessel. The mean values of the vectors ;k and ik
are denoted by ;k? and ﬁg’ respectively. Now let

i and @ denote the potential translational ana
rotational displacements* of the vessel, in a given
seaway, if it were not moored and not underwsy. These
two vectors are regarded as prascribed functions of
time. For small rotational displacements, the position

-~

vectors Ty at the attachment points can be approximated

by

rk rk + A+ pk

+ R 4 §' X ;k? (26)

where R' and a‘ represent anomalies of the translational
and rotational displacements of the vessel assuciated with
the constraint of the mooring lines. Thus i + R' is the

vector translational displacement of the center of mass

# Referred to equilibrium state.
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{

Fig. 2

Schematic illustrating terms employed
in the upper end condition.
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of the moored vessel relative to its equilibrium position.
Likewise a + %' is the vector rotational displacement
of the moored vessel relative to its equilibrium
orientation.

Let R ', R;', Ry’ denote respectively the surge,
sway, and heave components of the vector ﬁ' and let
¥Vi's ¥o', ¥3' denote respectively the components of
;' in roll, pitch, and yaw. These components represent
a Carteslilan system, the reference axes of which are taken
as the equilibrium orientation of the principal axes of
the vessel. As shown in Appendix A, the approximate
equations of motion governing the above quantities are

(in compact form) -

(/012 + 285 4/dt + o) R,' = .; Ty 5M, (27)
and
(@/at® + 25, a/at + o5'2)¥ " =C-% Ti/L 5 (28)

where Jj =1, 2, or 3. The sums on the right are taken
over the total number of mooring lines. The terms

T‘kj represent the Cartesian components* of the vector

*In the same system as that for Rj‘ and wj'.
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3>

!  where

Ty being the vector tensile force at the point of attach-

ment on the vessel for line k (Fig. 2) and &k?

is the mean value of ik (or equilibrium value). Like-

wise the terms J'kj are the Cartesian components, in

the same system of the vector 3k' defined by

J o= 3 -0, (30)
where
k= [P + (¥ +a) xp Jx Ty (31)

and 3%? is the mean value of 3k’ Physically ~3k
represents the torque exerted by line k on the vessel.

The terms Mj are the effective masses of the
vessel (including effective added mass of water) for
motion in surge, sway, and heave (j = 1, 2, 3 respectively).
The terms Ij are the effective moments of inertia about
the principal axes for roll, picch, and yaw (j =1, 2, 3

resnectively). The coefficients B and Bj' are
J ¢

"‘W
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are damping rates (units of reciprocal time) for the six

J

nominal natural frequencies (radians per unit time) for

components of motion. Finally o and cj' are tne

the unmoored vessel. Note that o, =0, =03' =0
(for surge, sway, and yaw).

Equations (27) and (28) imply that R' and §°
are appropriate integrals of the dependent veztor &k
and specified function &. Thus (26) implies a relation
between the dependent variable ;k at the upper end of

~

line k and the Tk for all lines. Morecover, there are

as many relations (26) as there are lines, which implies
that the system should bte determinats. As a special case,

-~

if R' and §' are negligible compared with A and

~

a Trespectively, then (26) reduces to the simple relation

- “ -~

— o 0
e = 0 +r+a X py (26a)
in which A and o are prescribed.
Whether one chooses to specify A and a or
(i + R') and (o +§') is perhaps optional; in either
case the motion of the upper end of the mooring lines (in

the case of multiple mooring) should be consistent with

(26).
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ITI. STRESS-STRAIN RELATIONS FOR
ROPES AND STRANDED CABLES

1. Known Properties

Scme examples of load versus elongation for ropes
and stranded cables are shown in Figs. 2 and 4, 1In
Fig. 3, which is taken from Wilson (1967), typical
processes for steel wire cables (upper panels) and for
coir mooring rope (lower panels) are preseunted. Fig. 4,
which.1-> taken from Paquette and Henderson (1965),
represents a test carried out for a one-half inch
diameter nylon rope of 55-inch original length. In the
latter test the tension was cycled over ranges of‘i.180
1bs. relative to ten selected mean tensions. Such
tests demonstrate certain features common to both
stranded cables and ropes which are summarized below:

a. The stress-strain relation is definitely
process dependent; i.e., the relation nctween stress
and stain at time +t is dependent upon the prior
stress-strain conditions;

b. The material suffers a permanent anelastic
strain which is dependent upon the maximum load

previously experienced;




b AT TR

c. For cyclic loading and unloading a hysteresis
loop exists which implies that the stored energy is not
; entirely elastic;

! d. Anelastic creep is evident for cyclic loading

particularly for large mean loads; the creep tends to

FRLORE LT

reach a limit after many cycles so as to form a closed
hysteresis loop;
e. The amount of hysteresis energy loss per cycle -
definitely depends upon the range of cyclic load;
f. The material can experience a time dependent
f relaxation of strain (negative creep) upon sudden

release of load;

Trilt

g. Under cyclic loading, the apparent spring

coefficient (slope of the principal axis of the hysteresis

it i st

loop for small range of load) increases with increasing

HE R A S R ok i

mean load (Fig. 4). -
The latter effect can also be seen in terms of the

curved axis of the large hysteresis loopsshown in Fig. 2

E (dashed curves in upper panels). The rope or cable

( acts like a stiffening spring as well as displaying

significant hysteresis.
Conclusive measurements are lacking in regard to

the influence of cycling rate on the apparent spring

coefficient and hysteresis for a given mean load.
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Fig. 3 Repeated load-elongation tests for mooring
line materials: (a) and (b) steel-wire
ropes; (c) and (d) coir fiber ropes (after
Wilson, 1967).
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2. A Simple Maxwell Model

o Sk e

A poscible approach for representing the stress-
strain processes in a rope or cable is to adopt a

simple three-pararmeter Maxwell model to simulate its

Wyt AL R 1P T bk R

visco-elastic properties (Freiberger, 1960, p. 579 and

R

3 { 774). Such a model is shown schsmatically in Fig. 5.

PR ENA NI

In this mcdel K, and K, represent spring couefficients

Vi ol

with units of force per unit strain and N 1is a

2 AF

frictiunal coefficient with units of force per unit time
rate of strain. Let € be the overall strain for the
system; this is the same as the strain in segment DE
or in segment AC (Fig. 5). Let ¢ and £ be the
partial strain in segments between AB apd BC,
respectively. Let T, be the common tensi~n in the
series segments AB and BC and let T, be the tension
in segment DE. The total load, T, is given by ;'
% T=T, +T,;5 moreover ¢ = ¢ + £. Finally we take
T, =Kj¢, =N dg/dt and T, = K,e. Eliminating
T, » ,, &2 and e, Dbetween the above five relations

leads to the following constitutive equation for the

; system

o g R LA

T+ T dT/dt = Kee + (K, + K, ) 7 de/dt, (32)

G fad R

D e

o
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Fig. 5 Schematic ¢of a simple visco-elastic

Maxwell model (symbols are explained
in the text).

=

Fig. 6 1Idealized load-strair process for the
Maxwell model; the slope of lines OA and

CB is (K, + K; }; the slope of line OB
is K, .
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where T = N/K, . The latter parameter represents a
characteristic relaxation time for the system. In

the above relation it is presumed that the three
parameters K,, K;, and t are constants. A relation
essentially equivalent to (32) was deduced by Meixner
(1965) based upon an entirely different approach in-
volving the thermodynamic non-equilibrium processeds

in anelastic materials.

The above modelimplies that Icr very sliow changes

(32) reduces to

T = K, €, (33)

while for rapid changes

AT = (K, + K, ) Be. (34)

Thus the system is characterize< by two limiting elastic
stress-strain relations which we will refer to as static
and dynanic.

Consider the following special time dependent
process illustrated in Fig. 6:

a. Starting at zero load and zero strain apply

a sudden load T, resulting in slongation e, =T,/(K + K ).
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b. Under the sustained load T,, (32) predicts
that e will creep ultimately to the value ep = T,/K,
after an elansed time of maay T units.,

c. Having reached point B now suppose the
load is suddenly removed; the strain immediately after
r=moval shoulid be € = €g ~ €, since curve BC 1is
parallel to curve OA.

d. Again at constant (zero) load, the system
is not in equilibrium and (32) predicts a relaxation of
the strain with nearly complete recovery after an elapsed
time of many T units.

The above process is an idealized hysteresis loop;
in ract it gives the maximum hysteresis compared with
any cther cycle having the same range of T. For
simple harmonic cycling of T, the hysteresis predi:cted
by this medel will be frequency dependeint.

Suppose T 1is cycled according to the relation
T = T, + AT cos wt , (35)

then a periodic solution for & satisfyirg (32) is

ST e
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T
e = g +[K + (K +K) (v)?] cos ut

+ K w7t sin ot [K,2 + (K, + K, )2 (wr)2]-1 , (36)

where both T and € are of period 2r/w. Since ¢ is
out of phase with T, a plot of T vs € as in Fig. 7
shows a characteristic hysteresisloor Had we allowed
for an arbitrary initial condition then the resulting
plot of T vs ¢ would also show some creep effect
as in Fig. 4, with T vs ¢ ultimately approaching
the stable hysteresis Joop implied by (35) and (36).

The hysteresis for a closed cycle will be defined
by

H= j)frde. (37)

For the idealized process represented schematically

in Fig. 6, the hysteresis is simply

H, = T, (eg - €,)
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7 Hysteresis ellipse for simple harmonic
cycling ¢f the Maxwell material.
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or

H = ) (38)

where AT = TA/E. For simple harmonic cycling we can

compute H by rewriting (Z7) in the form

er/w
H=J; ‘I‘%—%dt. (39)

Using (35) and (36) this gives

H = T K (AT)2 wT (}40)
(K2 + (K + K )2 (w7)?]

A non-dimensional plot of H versus w according to
this reiation is shown in Fig. 8. The latter has a
maximum value when wr = K,/(XK, + X, ), the maxinun

value of H being

Hy, = ZIIEZ Eéf i"x;) . (41)
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Comparison with (38) indicates that the muximum
hysteresis for simnle harmonic cycling is 7/8 times
that for the idea :=d process.

The slope of the major diagonal of the hysteresis
ellipse (line AB, Fig. 7) represents an apparent spring
coefficient K¥* whose value can be shown to bhe given by

(K2 + (K + K )2 ()2 2

% . . 4
¢ { 1+ (wr)? (42)

For wr << 1, K* 1is nearly egqual to K, while for

wT >> 1, K¥* approaches K, + K, . Thus the apparent

spring coefficient for this model is frequency dependent.
The elastic cnergy per unit length, Ee’ for the

Maxwell model is the sum of that stored in segments AB

and DE (see Fig. 5). This can be expressed in the

form

o =

1
Ee = KO €2 +'§K1 612 . (u3)

The eiastic strain e€; can he rewritten as the difference
€ - & where g€, 1it will be recalled, is the anelastic
strain for segment BC. Thus the elastic energy can be

rewritten as
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E, = 2 K €@ +3K (c-8) . (44)

Now consider the partial derivatives of the function

E, (e, €):

‘e = (Ko +K)e-K g,

;; (45)
’ aEe/ag ="IS€+K1§ .
' The above two relations can be shown to be consistent
with (32) if and only if
bEe/ae = T,
‘ (46)

‘ 3E,/9% = -N dg/ot,

where N = K r1. These relatiomBwere employed &r a
starting point in the analysis by Meixner (1965). They
3 are asserted to be more general than the special
Maxwell relation since Ee need not have the form (44)
for more general materials. Indeed relations (46) will

serve as _a useful point of departure ir. the considerations

of the following section.
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3. Generalization of the Maxwell Model

Although the above simple model allows for
hysteresis and associated relaxational phenomena, it
is obviously deficient in at least two respects. First,
there is no allowance for permanent elongation. Second,
it assumes constant vaiues of elastic coefficients.
Both of these shortcomings can bte overcome by adopting
a scheme similar to that suggested by Wilson (1967).
In essence this scheme distinguishes between the quasi-

elastic strain € - ¢ and the permanent strain e,,

o

in which the latter is a function of the maximum tension

which the material has previously experienced. Morec

for given e¢eo, the tension is regarded as a2 non-linear

function of the quasi-elastic strain. The data further-

more indicate that the form of this dependence is

independent of ¢,. -
The proposed generalized stress-strain model which

incorporates *hese features can be obtained in a sys-

tematic manner by starting with a rational generaliza-

tion of the elastic energy function Ee. It will be

understood that Ee is the elastic energy per unit

material coordinate {s). As before we will regard this

as a function of the total strain € and the anelastic

MR TR RSN il . M ———— L & e Wl mmemw N m ~ e 1
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strain. 7The latter, however, ccnsists of a passive
permanent strain ¢, and an active anelastic strain &€,
These are distinguished by the fact,that, under normal
conditions, OE/dt can be positive or negative while
d¢, /0t cannot be negative unless the material is
thermally or mechanically reworked.* Specifically e,
represents the equilibrium value of € at zero load.
The elastic part of the strain is (e - ¢, -§) and

the counterpart of € 1in the previous model is now

(e - €5). W¥With this in mind the proposed generalization

for Ee is the following:

E, = fle ~e) + (K/2) (¢ -¢ -8)2, (47)

in which K, 1s a constant with dimensions of force
and f(a) denoces a non-linear, positive function of
@ = ¢ - ¢, dependent upon the material and con-

figuration. Relation (44) is a special case in which

=0 and f(e) = (K,/2)e2. Using (46) yields

*In essence, this is a manifestation of the second
law of thermodynamics as applied to real materials in
which e, 1s related closely to the entropy of the
material, at least for adiabatic conditions.

e m—— e — - e w4 — e e e e e oo - - - - - -
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T = f'(e - ) +K (¢-¢ -§) (48)
and
T, %% = (¢ -¢ -E), (49)
where f'(a) = df/da and T, = N/K . The latter

time constant now carries a subscript since we will
introduce at least one more time constant later.
For very slow rate of strain, (49) reduces to the

equilibrium relation

€ ~€ -§& =0 (50)

and the associated quasi-static load-strain relation

becomes

T = f£f'(e - €). (51)

On the other hand, for very rapid rate of straining §
is small compared with € - ¢;, although T, 0g/dt
is not. In this case, (48) reduces to the dynamic

load-strain relation

Brn.
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T, = £ - o) + K (¢ - co). (52)

The associated dynamic spring coefficient is

(%§>d = (e - co) 4 Ky (53)

Wilson (1967) hes cuggested a simple power law
dependency of T on (e - ¢o) for dynamic conditions;

this is of the form

Ty = Y (e - T (54)

where Y 1is a constant. He ’inds that n = 3 for

nylon rope and 3/2 for stranded steel cable. However,

this relation appears to give a reasonable fit to the

dats only for moderate to large values of € - €. At

small (¢ - €5) the data pertinent to the dynamic tests

tend to indicate a linear dependency of Ty on (e - ¢;)

since (dT/'de)d has a finite slope at ¢ = ¢, (see Fig. 3).
An alternative is to take f(a) proportional to

an such that Td reduces to a linear relation at small

€ - €

o+ However, as will be shown, the data of Paquette
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and Henderson (1965) indicates that an exponential form
for f(q) is more appropriate, at least for nylon rope.
They evaluated the dynamic spring coefficient at ten

mean tensions from the slope of the stabilized hysteresis
loops (of small AT) for the test illustrated in Fig. 4.
Such measurements ar> potentially more accurate than
inferences drawn from the large hysteresis loops

analysed in Wilson's study. Thelir results are slhiown

as a function of tension in Fig. 9. These seem to indicate
a linear dependency of (aT/ae)d on T. A least squares

fit of the form

(%”3) - K + bT,
d
yields (55)
K = 1.4 x 10% 1bs
b = 26.0,

with a standard error of estimate of (0T/de), of

about 0.7 x 10* 1lbs for the 1/2 inch diameter nylon rope.

s kM
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If we accept the empirical fit (55) then from
(52), (53}, and (55) we get

f"(a) - b £'(c) = (K-K)+bKa, (56)

where a = € - €¢,. This leads to a solution for f'(a)

of the form

£'@=ce®-F-K a, (57)

where c¢ 1is a constant of integration. Thus from (52)

we get
Ty = ¢ el (€ -e0) _ K/v, (58)

however, T; must vanish when € = ¢ (by definition

of €p) and hence we require that c¢ = K/b. Consequently
K b - -
Ty = Epe ) ag, (59)

The limiting slope at zero € - ¢ ( zero T, ) is

(3T Re)y = K. (60)

PO S RIP WPV
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Moreover for the static case, 1or which T 1is given

by (51), we get
T = T3 -K (¢ -¢e) . (61)
This has a limiting slope at zero ¢ - ¢ gZiven by
(3Tfeje = (K-K), (62)

which clearly requires that K, < ¥ .
Finally from (47) and (57) withk c = K/b we get

for the elastic energy
E,= 5 ePE-%) iy (e-c
- K (e -¢)8+ (K/2) ¢ . (62)

For very small (e - ¢,) this relaticn reduces to that
for the simple Maxwell system where K 1is equivalent to
K, + K for that system.

As an application of (59), with the coefficients
given by (55), we note that a dynamic tension of 7000 lbs
will give rise to a quasi-elastic elongationai strain
(¢ - €¢¢) oOf about ten per cent. However, under quasi-

static conditions the elongation would be significantly

TR et T e e o’ e o g e = o
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g larger, particularly if K, is nearly equal to K.

For the general straining conditions, (48) and (57)

S e

yield
T = Eperle-c) gk, (64)

: which is consistent with bEe/ae from (63). This

.- together with the prognostic relation for §, Eq (49),
represents a generalilized model for the case of constant

eo.

4, The "Saturation" Relation

To relations (64) and (49) we must add a third
relation governing €;. Figs. 3 and 4 indicate that

for a given ¢ there apparently exists a sort of ;

o

. "saturaticn" curve in the T, e-diagram. This corresponds
to the path which would result for very slow undirectional
straining from the original state to the uitimate point
(path 0 S U of Fig. 10). It is strictly an irreversible

ohe-wayjpath,iﬂr if the load is removed at some inter-

mediate point S, even very slowly, the strain will

S

return to some value € along a difrerent path SB.

(]
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Fig. 11 Schematic of dynamic overloading in the
vicinity of the "saturation" curve.
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Thus in principle
eo = F (TS) » (65)

the form of the function being readilydeduced empirically.
The data summarized by Wilson suggest that a power lew

form
F(T) a T." (66)

leads to a reasonable fit, at least for tensions less
than 75 per cent of the ultimate value. For ropes m < 1
while for steel cable m > 1.

It is not implied by the above discussion that Ts
is an upper bound for T for given €c+ The actual
T versus € near the saturation level depends upon the
rate of strain. For example, referring again to Fig. U,
the relation Ts versus € 1is shown by the dashed line
drawn through the uppei ends of the final hysteresis
loops. There is an "overshoot" of this saturation curve
which occurs when the mean load is suddenly increased
after having reached a stable hysteresis loop. In order
to simulate this effect, the following relation is

suggested for e¢o :
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F (T) - €5, if ¢, < ¥(T)
o 06, /0t = (67)
0 , if ¢, 2 F(T)

T

r-

where 1, is a second characteristic: relaxation time
for the rope or cable. If T is initially at the
saturation 1level for given ¢, and if JOT/d%t > C,
but of very small magnitude, tnen ¢, will change
nearly in accord with F (T).

Suppose, on the other hand, that T is initially
at some saturation level Ta (Fig. 11), corresponding to

€959 but experiences a sudden increase *o the value Tb

"after which it remains constant. Then since &, < F(T),

¢, must increase with time approaching the final value
Cop = F(Tb) asymptotically. Specifically relation (67)

implies that
-t /T
€ = €op - (eof - eOa) e /To (68)

for this case. The change of € will have essentially
the same behavior. As a test of this relation, the data
of Fig. 4 wns analysed for the case where the mean tension
was suddenly increased from about 6300 1bs to 7C00 1lbs.

In this test T was also varied periodically over the
range 7000 + 180 1bs after the increase, thus giving

a progressive series of loops which provide a time
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scale for the creep phenomenon. The period of cycling

MY & it LT o aff ok a e €3

for this case, as deduced from the data of Paquette and
Henderson, is about ten seconds. A semi-log plot of
€p ~ €0 (in relative units) versus time is shown in

Fig. 12. This clearly confirms the exponential re-

laxation and yields a value of ¢, for the nylon lire

of about 40 seconds. i

5. Hysteresis for Nyloa Rope

The measurements of Paquette and Henderson (1965)
tor the one-half inch diameter nylon rove included
evaiuation of the hysteresis for five different ranges
of AT all at a comron mean tension of 2000 1lbs and
vt cycling periods from 12 to about 60 seconds. Their i

results indicated that the hysteresis energy absorption

per cycle, H, was nearly independent of the period of .

vyeling. The results are summarized in Table 1.

:
5
i
H
i
i

In termc of the present load-strain model, the
lack of dependency of H on the period of cycling should
imply that H is near its maximum, so that it is linearly

independent of w.
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TABLE 1 ;
HYSTERESIS IN HALF-INCH NYLON ROPE
AT MEAN TENSION OF 2000 lbs g
! (After "aquette and Henderson, 1965)
b ’ ! §
& |
Tension Hysteresis - Period of Cycling !
Variation AT per cycle (sec)
. (1v) (1b)
+ 140 0.12 18, 36
+ 280 0.52 12, 16, 40, 57
f + 560 2.3 18, 30
+ 1120 15.2 . 30, 50
+ 1400 29.7 30, 55
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For small amplitude cycling about a mean tension

>

et e

Tos the linear theory of section 2 should be applicable
: i provided that (X, + X;) 1is taken as the dynamic spring
E i coefficient for the mean tension T,. From Fig. 9 with
To = 200C1bs we get (K, + Ky ) = 6.8 X 10¢ 1bs. From
the results of section 3 it was found that K, should
rot exceed 1.4 X 10* 1lbs for this same case. £ we :
consider that H is at its maximum given by (41) and

that XK, = 1.4 X 10* 1lbs then we find that at most

iRty Eolow 10t bl OV A K A RS OO L R

- H = 6.0 x 10-°® (AT)? , (69)

for small AT, in the case of the one-half inch nylon
line tested by Paquette and Henderson. A plot of the
§ . data from Table 1 is shown in Fig. 135. The full curve
é ‘ 3 is simply a smooth interpolation. The dashed curve
i‘:§ is a plot of relation (69). The fact that it is

; : ; asymptotic to the full curve for small AT seems to

! be a verification of the assumptions ieading to relation

psciag

(69); namely that H is at its maximum for given AT
P and that K, is the maximum permissible value consistent
s ' with the data of Fig. 9. If this is correct then wur,
é i ; should be equal to the value for which H has it maximum,

namely K,/(X¥, + K ) which has the magnitude of 0.79.
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The overall mean period of cycling for these tests was
about 30 seconds and hence T, 1is presumably about four
seconds.

There are, however, two disturbing features of the
data which are not adequately explained by the present
model. First of all, the appreciable departure of H
at large AT from that given by (69) is not adequately
explained. Second, that data of Paquette and Henderson
indicate that the dynamic spring coefficient decfeases
with increasing AT for fixed value of mean tension.
The non-linear aspect of the load-strain relation does
not adequately explain these observations. A possible
explanation may lie in the frequency dependence of H
and the apparent spring coefficient. However, adequate

tests of the frequency dependence are lacking.

6. Summary and Possible Further Generalization

At least many of the observed properties of ropes
and cables seem to be in accord with the foregoing

model which is summarized here:
K -
T=-.3[eb(e e°)-‘zl§]-K,§, (69)

nE = (c-c-8), (70)

P YT
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5 (F(T) - ¢, , if ¢, < F(T)

T, 9t = Jl 0 , if e, 2 F(T) (r)

where F(T) = ¢, corresponds to the saturation relation
appropriate to very slow unidirectional straining.

It must be emphasized that further critical
measurements are needed to check the validity of the
model, particularly in respect to the effect of . -.ue
rate of strain. Measurements of hysteresis over a
wide range of cycling periods are required for an
accurate evaluation of the parameters 1, and K
for a particular rope or cable. Indeed it is quite
conceivable that the true behavior of ropes and cables
requires a more complex model, incorporating a discrete
spectrum of relaxation times and associated K values.

In order to clarify the above remark we note that
relations (69) and (70) can be recast in the following

integral form in which €& has been eliminated

oo By tB Tag-neMn o, (12)
Ty 4 )
o)
where & = € - ¢;. The integral is a particular cor-

volution of the function a(t). A natural generalization

of this relation is
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T o= B (e 1) - ‘L a(t - 1) G(a) dx , (73)

in which the generalized ftunction G(A) can be repre-

sented in the‘form

6() = Y (k) M7y (74)

1

T8

Relation (72) is a special case in which n = 1. Clearly
(73) nas greater flexibility in respect to fitting the
observed frequency dependence of hysteresis in the case
of cyclic loading. For small amplitude, simple harmonic
variation of T or e at fixed e, and frequency w,
relation (73) can be shown to yield the following
hysteresis

2

in which h (w) 1is the transfer function

h (w) = f G()) sin wx 4 (76)
(o]

and K* 1is the dynamic spring cozfficient. Using (74)
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n wT

; d
h = I.{ . 77
(w) j; S Tr e (77)

As an example, suppose n = 2 with

KK = K and 7, = 10 1,.

In this case the function h (W) possesses a very broad
range of w over which it is nearly a constant (Fig. 14).
There is some indirect evidence that this behavior may
be closer to reality than that implied by the simpler

(n = 1) model. However, lackir—~ really definitive
evidence for this, we will a2dopt the model delineated

by (69) to (70) in the remainder of this study.
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? IV. ENERGY CONSIDERATIONS

1. Energy Equation for a Mooring Line

The equation of motion of a mooring line in vector

E % form was given by (15). If we form the scalar produc

- ~

of V with this equation we obtain

S Bmen) [V _L o ve? ]

- W ks{f + I‘i‘{f s (78)

=V

ZEL

where for simplicity we will regard m, and w as

constants. The term w k-V can be written as d(wz )/ot

w318 INIPOARIRII TN o A ey

where 2z 1is the elevation of a material point of the
line at s,t and wz 1is an effective potential energy

in the water per unit of s.

gt e v

Now consider the term V-.0T/90s. This can be

written as

vE - L @n-1 . (79)
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A

Furthermore, since V = 9r/dt we can write

v _ 3 ,or

3 = 3t G
or

oV d ,° do

% = 5t ("3

using (22). Now 930/9s = 1 + ¢ where e 1is the

elongatioral strain at s,t. Hence we find

H o TE (eI (80)

Moreover T = T 1 and since J7/0t 1is orthogonal to

;, it follows that

de (81)

3
o,
Il
3
)

Thus from (79) and {81), the energy equation (78)

takes the form

b
%? % (m+m) Vv ~% m, V.2 4 wz.}
+rE = & (1) + RV, (82)

el 8 '
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wnere V 1is simply the magnitude of V. It will be
recalled from the previous chapter that the elastic

energy Ee is a function of at least three different

L xd e S e eSS

- | strains (e, §, and ¢o). It follows therefore that

o 3E JE_de  IE_ 3 IE_ de
,"»7 e — e e e o D
3 = Tt tE ;XTI ST (53)

However, since € and ¢, enter only in the form
(e - ¢0) then BEe/Be° = - aEe/Be. Also using (46)

Lo we find

- OE, de K3 e,
T ST (o0

Consequently the energy equation finally takes

the form

-n ()2 - T 5, (85)

: in which

e
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(86)

where V 2 = V¢ - V.2. Each of these energy functions
represents energy per unit material coordinate (s).
The kinetic energy includes that of the mooring line plus
that of the effective added wass of water, which is

related to the normal component of motion of the line.

2. Energy Supply 8.d Loss for the Line

If we integrate (85) with respect to s from the
anchor point to the point of attachment on the surface

vessel we obtain

L L. .
% i Eds = (V-T) + i RV ds
L L
. de
-] n (%—f;)a ds - Jl' T 5 ds, (87)
(o] o]

L
where i E ds 1is the total mechanical energy of the line

(kinetic, potential, and elastic energy). The term
({7"3')T represents the rate of work done on the mooring

line by the ship. The integral involving R*'V is the

e N e
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R

net work done by the water on the mooring line per unit
time. The remaining two terms represent rates of energy
loss (or more correctly, rates of energy conversion .
from mechanical to unavailable thermal form). The» are :
related to the non-equilibrium processes occurrirz within

the line (hysteresis and permanent strain)., Tr2 Jatter :
terms are always of one sign for clearly neitlaer (Og/0t)? é
nor 'aeo/ﬁt can be negative. However, Oe,/0t can be :
zero if the range of T for given ¢, s suitably
limited. On the other hand (Jg/dt)2 can vanish only
under static conditions.

If the water is nominally ac¢ rest (ﬁ = 0), then
the term ﬁ-% is negative ani represents a rate of
energy loss tc the water Uy form d;ag. In this case
a steady stale of Ay namic energy of the line can be
maintained c.ly if (§°§)L is positive. Clearly in the
deep water where ﬁ is negligible ﬁ-% will indeed .
tend to be negative and hence lead to damping of trans-
verse oscillations in that region of the line. The
energy loss terms related to (0g/9t)2 and o¢,/Ot ,
on the other hand, are effective in damping longitudinal

waves in the line.

- - - . e b o
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It can be shown that for cyclic variation of T
the mean value of N(O£/0t)2 is simply H/P, where

P 1is the period of cycling and H 1s the hysteresis
defined vy (37).
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V. MOORING LINE EQUATIONS IN CHARACTERISTIC FORM

1. Geometrical Considerations

Let X, ¥y, 2 be a fixed Cartesian cocrdinate system
with origin at the anchor point and with 2z representing
elevation. Let i, 3, i represent the associated unit
vectors for this fixed coordinate system. The natural
coordinates are defined in terms of the local orientation
o1 the mooring line at material peoint s at time ¢
(Zajac, 1957). It will be recalled that ; is a unit
vector tangent to the axis of the mooring line at s, t
and in the direction of increasing s. Now let ; be a
anit vector normal to k and r with the direction of
i X ;. Moreover, let ;- be a unit vectcr normal to ;
and p with direction p x 7. Thus v, 1, 1 form a
mutually orthogonal, right handed, set of local coordinate
vectors.

Let ¢ denote the zenith angle and § the azimuth¥*
angle of the local unit vector ; relative to the fixed
Cartesian coordinates (see Fig. 15). Note that these

angles are not coordir2te angles of the position vector

* More preciseiy §. is the azimuth of the vertical

31 Lt

hll

plane containing vector T, as measured from the x axis.
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Fig. 15 Schematic illustrating the local coordinate
system for a mooring line and its relation
to a fixed Cartesian frame of reference.
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of P but rather of the orientation of the tangent at
point P. From the geometry it can be shown that the
relations between the local coordinate vectors and the

fixed reference ccordinate vectors are given by

-~

; = 1 cos § cos & + 3 cos § sin § - k 3in g,
; -~ isind + jcos @, (88)
T = i sin 6 cos § + 3 sin 6 sin & + ﬁ cos 9§ .

»

The orientation of 3, ﬁ, T in general vary with s along
the line at. given t or with t =2t fixed s. Using
relations (88), it is easily established that

dv = M cos B d - T dd ,
dy = -y cos g d - T sin 6 d& , (89)
dr = v d8 + 1 sin 6 dd .

2. Kinematical Relations Involving the Dependent Variables

The vector V, which representsthe velocity of a
material point of the mooring line, can be represented
in the form

V =V, v+ Ju mH+V T, (90)
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in which Vv and V}l are normal components and V'r
is the tangential compcnent of the velocity. The

acceleration of a material point is given by

N W, . W, . W
T

¥ =T Vre Rty

~ a

+ VV%%+V;1%%+VT%%. (91)

However, the turning vectors like Bﬁ/at can be evaluated
in terms of 96/0t and 9§/9t wusing (89). The resulting

relations for the acceleration is

~

v oV . oV
A R

+ V‘1 (- cos -eﬁv-r'si_n.a-%-r)
+ V_ (%%3’-&- sine%-;). (92)

This relation will be useful for recasting the vector

equation of motion into the natural component form.
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é ; A relation entirely similar to (92) can be obtained B
L - i
E i for 09V/ds, in which the time derivative terms are re- :

placed by derivatives with respect to s. However, we

have already found that dV/3s is related to de/dt and [
37/3t by relation (80). If we now write B;/Bt using H
the last of relations (89) and equate coefficients of

. corresponding unit vectors in the two different expressions

3 § for oV/ds, we find the following (prognostic) relations
H

for ¢, &, and e€:

it she

oV. = 3
! v d :

(l + 6) 3% = 35 + VT gg' - vll cos § % » (93)

ov
(1 + €) sin a-g% = BEE' + (V,, cos g

; : + V_ sin 8) %% , (94)
s, . 3 -

%% = E'sl - VL.1 sine%% - va%. (95)

These are purely kinematical compatabiliity relations

g among the dependent variables g, &, €, VQ, Vu, and VT.
Moreover they are relevant only for the transient state;
in the case of equilibrium conditions they are satisfied

trivially.

4 meﬂ"ﬁ'"ﬁr"“"r'"mwr R
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Relation (95) can be interpreted in the following
way. Suppose we solve for va/Bs and integrate over

the full range of s. This yieids (since v, {o,t) = 0):

d
v (L, t) 5

O |4

(96)

As a special case, suppose 0§/ds and 0§/ds vanish.
This implies that the line is straight and hence (96)
implies that a positive tangential velocity can exist
at the end of the line only if the line stretches. On the
other hand if the line is curved, then part of Vr

at the end of the line can be due to the effect of "taking
up slack" in the line; this is represented by the second
integral in (96).

Relations (93) and (94) can be interpreted in a

W b s bs 4 4wy v

somewhat analogous manner. Specifically the line can
have a normal component of motion at its upper extremity
if the line has a progressive tilt with time or if it

experisnces a flexing.

s . - oo o = -
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The remaining kinematical relations of importance
are those relating the Cartesian coordinates of a
materiai-point of the line to the natural coordinates.

First of all we note that

., (97)

~

where V 1is expressed in natural coordinates by (90) and

r o= x1i + yJj + zKk. (98)

Using (88), (90), (97), and (98) we find

ox

3

%% =-Vy sin 8 + V_cos g . (99c)

We can also employ (22) to obtain relations for the
derivatives of x, y, and 2z with respect to s. Using

(22) and (88) yields

O EN AR SN L NIE A AR o e S

E: |
i
i
%
i
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O et
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- 'VQ cos § cos § -~ Vu sin & + V; sin 6 cos &, (99a)

V, cos 6 sin & + Vh cos § + V_ sin g sin &, (99b)
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S5 = (1 + ¢) sin g cos § , (1002)
%% = (1+¢€)sin 6 sing , (100b)
0z _
35 = (1 + €) cos g . (100c)

For the case of steady equilibrium conditions, the latter
set of relations are useful., Either set of relations can

be used in the transient problem.

3. Eguations of Motion in Natural Coordinates

The vector equation of motion (15) contains the

term ai/as which can be expressed in the form

%:%’5? +T%”§-, (101)

where oO7/ds 1is the local vector curvature of the line.

Using the last of relations (89) we find

%Tg=%g-{’ + sineg%:l- (102)

Also from relations (88) we get

-~ -~

k = -sing v +coSg T . (103)
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The residual force R, given by (18), contains the

terms OU;/dt which can be vewritten in the form

3T < EE;'T-}-U.EE. (104)

It will be convenient to denote by G that part of ﬁ

et ot i
A
R U——

; ‘ which does not depend upon b?/at. Accordingly

R = G~ ma T U--SE (105)

_ and
] G = 2 (ﬁh - ﬁh) +TTx (ﬁh - ﬁh)
- 3 ~ 3

‘ + (md + ma_) ST "B, T (375 7)), (106)

where

| A = (p/2) CgD (14e) |T -V |,

i (107)

’-—j
n

A N cos (ws t+6) .

ok Finally we note in analogy to (102) that

V + sin g g% " (108)
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Consequently using (15), (92) and the above relations
of this section we obtain the following component equations

of motion

ov
Q 3
(m+ma) {'a-tl + VTB%-VMCOSS?%}

(109)
0
-Ts=wsin6+Gv,
ov
(m +m,) LETE + (Vy cos g +V_ sin g) %%
- Tsing g - o, (110)
and
ov 3
mget -V +m (v, -U) ]
\' m (V. -U) ] sin 6'%1
S Im Wy my Y, -G, v
oT
-35 = -wcosg+G_ . (111)

The components of G in the natural coordinate system

are as follows:
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33
G, = (U, - v)-rT (Uﬁ - V) + (my + ma)ﬁgQ.,
- - - Y D .
Gy = A (U, -V)+T (U, -V)+ (mg+m) T, (112)
G:T = md U,r N

T

where ﬁy, ﬁh, U_ are the natural coordinate components
of the vector aﬁ/at.

It is supposed that the ﬁ is prescribed in terms
of its Carte.lan components, U, U&, U,. Using (88)

we find that

Uv = Uk cos g cos & + U& cos g sin § - Uz sin ¢
Ug = - U sin g + U& cos § , (113)
ur =

Ux sin 6 cos § + U& sin g sin & + Ui coSs §.

Moreover it is supposed that Ux’ U Ué are prescribed

s
functions of x. v. z. ~nd t. Heice they are implicitly
related to s, t thrcugh the dependent position coordinates
of the mooring line. The functions ﬁv’ ﬁ#, and ﬁ}

are related to their Cartesian counterparts Ux’ U& and

ﬁz through equations similar to (113).

R T
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Finally we note in passing that the evaluation of the

coefficient A requires the relation

lﬁh - %hl = [ (Y, - Vv)2 + (Uy - vu)2 }1/? . (114)

4, Characteristic Form of the Mooring Line Equations

in Natural Coordinates

In the natural coordinate representation we have
the following dz2nendent variables: V,, Vu, V}, e, ¢, T,
and €. Each .” these is a function of s, t. They
are governed by the kinematical relations (93), (9%), (95)
and by the dynamical relations (109), (110), (111). To
these relations, we add the diagnostic equ;tion of state
(69) relating T to & plus the two additional variables
E and ¢,, the latter two being governed by the prcg-
nostic reiations (70) and (71). This gives a total of
nine dependent variables and nine equations. We can
also add to ...ese the three relations (99a, b, c) or
(100a, b, c) governing the three position coordinates
Xy, ¥s Z.

Thus, in summary, the general three-dimensional
transient mooring line problem as formulated here (aside

from upper end conditions) involves eleven prognostic

S foa st oV

T A

4y etk i s

e o
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relations involving the twelve variables

VV’ Vu: VT’ 8, §, T, e, Ey, €95 X, ¥, 2

plus one diagnostic relation involving T, e, §, and ¢, .
Each of the prognostic egquations is of quasi-linear form.
For example, referring tc (109) tc (111l) we note that all
derivatives of the dependent variables enter linearly,
their coefficients being functions of‘the dependent
variables but not of their derivatives. Likewise the
terns Gv, Gu, znd GGT are functions of the dependent
variables but not of their derivatives. Any quasi-linear,
hyperbolic system of n e=quations in n dependent
variables but involving only two independent variables
(s; £ in this case) car be recast in a characteristic
form, which facilitates integration of the system (see
for examwle, Freeman, 1951).

The pfansformaticn leading to the characteristic

form of the equations is outlined in Appendix B. The

resulting equations are as follows:

+ B,

3.2

=
uﬂg

b

= ¢ /(m+m) (115a)

along
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= + [T/(m + ma) (1+ ¢) 31/2 s

where

= i+

B, = (Vv cos 8 + V_r sin g)

+ [ (L +¢€) T/(m+ ma) ]l/2 sin ¢

v, + Bi dg _ (Gy + w sin o)
at 2 at -~ (m + m )

43
+ Vu cos § it °

along

%—% = [ /(m+m) (1+ e)11/?,

where

N+

VEL (4 e) Vm+m )Ry

3

(115b)

(115¢c)

(1160b)

(116¢)

O bR AT
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Trx ke gr Ly o v o 8) =&
at my at = m
+ 4dv + dv + < + .
— v ™ - 99 . 5 9
+B gt & rBatihw (117a)
along
& - @mE, (1170)
where
Y - ke (e-¢) (117¢
+ + u + hut
and B3, BA’ B5, 36’ P are functionsto be defined

later; finally

9_5 (€"€o"§)

® - T (118a)
along

ds _ . -

a.f = 0 R (1.L8b)

i Ml )

e
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and
d€o
T - S(T, €) »
aiong
ds _
® = 9>
where
(F (T) - eo)/'fo, if €o <F (T)
S(T: eo) =
o) s if ¢ =2 F (T).
Moreover, from (69)
1 K+ bT + bK, §
€= ¢ +% X )s

which implies that Y has the alternative form

Y = K+ bT + bK, € .

(119a)

(119b)

(119c)

(120)

(121)
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4 The coefficients E3 to B6 are given by the
5 f following relations: )
t m o (m+m) vy
; By = & 2 — 2 () / (v, - 0,) > (122)
i + m_ (m+ m) .
a . — a Y\1/2 - .
& By = 22 2 (v, - 1), (123) ;
+ m_2 (V. - U))
- = a, - . 1/2
» B5 = Vv- m; A4 LT+(m+ma) v, (Y/m)/]
(124)
+ m_ (V- - U )
P s 2 - u i7h
Bg = V, sin@ VA [.T
+ (m+m) Vv, (Y/x)™/< }.sipe
m, (m + ma) 1/2
+ == (U, V, - U V) (¥/m)/% cos g,
(125)
i where
(m +m,)
a
Z = —5—= (L+e)Y-T. (126)
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g Moreover, P 1is given by
% :
: +
= K

= i(Y/m)l/2 T, (e =~ e =€) + S(T, )
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LRI ihdt<ARa

m
- = (v, - U,) (wsine +G) + v, - Uu) Gu]}’

it

pAGAl/eY

To these relations we zda equations (99a, b, c) for
prediction of the Cartesian position cuordinates of the
é : line at s,t. An alternative is to employ (100a, b,c)
to evaluate these quantities at a given instant from ¢

3 : and §.

Relations (115) and (116) govern the transverse
= i wave modes in the line, while relations (117) govern the
; longitudinal wave modes, the damping of which are
governed by (118) and (119). The nominal signal speeds

for the two modes are:

for transverse modes,

c' = [T/(m+m) (1+e) 312, (128)

for longitudinal modes,

c" = [y/mt/? . (229)
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Note, however, that these refer to speeds in the sense of
ds/dt. The true speed in the vertical direction can be

evaluated from the relation

dz 2z oz
T - %z t 35 0 (130)

where € 1is the value given by (128) or (129) depending

on the wave mode. Using relation (99c), (100¢) and (130)

glves

dz - s

5% = (L+€)Ccos8 -V, sin 8 +7V_ cosp , (131)
along ds/dt = C.

The transverse and longitudinal wave modes are
coupled through certain non-linear effects. In particular
the longitudinal waves are coupled to the transverse waves
through the terms involving the time rates of change of
Vv, Vu, 6 and § whicn appear on the right hand side

of (117a). These coupling effects are significant only

if dp/dt and ds/dt are large. Now since

8.2 .0, 32
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where C = 'i.(Y/h)l/Q for this case, it follows that
de/dt can be large if the curvature, 00/3s, is large
even though +the local rate of change of ¢ may be small.
In a similar manner, d§/dt can be large if the pitch,

0% /ds, is large. It is also possible for the angular
velocity o8/9t to be large for rotary motion of the
line. We note as well that the V-component, transverse
wave modes can be coupled to the p-componert, transverse

modes if d§/dt is large.

5. Magnitude of the Signal Speeds

The upper limits on C' and C" are determined
respectively by the ultimate values of T and Y. Wilson
(1967) gives the following values for 6 X 37 galvanized

steel cable of nominal diameter D (inches):

2,2

m = 4.9 x 10 D, (slugs/ft)

7 = 7.3x 10% p? (1bs)
6,2

Y = 6x 10° D (1bs)

0.0% .

[}
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For three strand, regular lay nylon rcpe:

2 2

m = 0.9 x 10~ D, (slugs/ft)
L 2
T, = 3.1x 107 D (1bs)
_ 552
Y, = 8x 10° D (1bs)
€y = 0.52 .

The latter three values are taken from Paquette and
Henderson's data.

The value of m, is given by

T DB (
m. = c, pf (1 + ¢) .
2 2 .
If we assume that D" (1 + ¢) = D_° and that C, = 1,
ve gei
m_ = 1.1 X 102D ° (slugs/ft)
a . o /s

where DO is in inches.
Using (128) and (129) with the above data yields
the maximum values of tb:2 signal speeds as presented

in Table 2.
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TABLE 2

MAXIMUM SIGNAL SPEEDS

Steel Cable Nylon Rope
Transverse (C&) 1010 ft/sec 1000 ft/sec
Longitudinal (Ca) 11,000 ft/sec 94C0 ft/sec

@

These speeds are independent of the diameter of the rope
or cable. Also the maximum speeds for nylon rope are
seen to be very close to the corresponding speed for
steel cable. Finally we note that the longitudinal
speed is about a factor of ten larger than the speeé

for transverse waves.

6. Characteristic Form of the Mooring I.ine Eauations

in Cartesian Coordinates

The characteristic relations in natural coordinates
as given in (115), (116), and (117) have a serious potential
pitfall which can lead to difficulties in application.
For those conditions where g = O, <the solution for 3
becomes indeterminaste. Note that B = B[ when g = O,

so that only one relation is obtained from (115). Even if
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we were to appiy these relations only to those cases

where the mean value of g differs from zero, it is still
possible for the instantaneous value of § at a particular
point s to be zero due to the presence of transverse ;
waves.
This difficulty can be circumvented by rewriting
relations (115) to (117) in Cartesian form. The details
of the transformation are lengthy, but straightforward.
This is outlinred in Appendix C. 1In principle we use

relations (88) plus the definitions

a = cos ¥ sin 6 ,
= sin ¢ sin 9 , (132)

Note that ¢, B, y are simply the Cartesian components

of the vector T (sce (88) ). Moreover, they must

satisfy the relation
a® + B2 + v =1 (133)
and hence only two of these components are independant.

V., V represent the Cartesian components

of V. Clearly these are related to x, ¥, 2 D0y

13
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‘ : aX/at = X
dy/dt = Vs (134)
[ 32/3 = V, .
Also, a, B, Y are related to X, y, 2 and ¢ by the
é relations
C
- 0x/ds = (1+e¢)a,
Oy/ds = (1 +¢) 8, (135
az/as=(l+e)y.
E Note that these satisfy (133) automatically since
(I+¢) = (3x/3s)2 + (3y/3s)® + (32/3s)2 .  (136)
c The transformed versions of (115) to (117) in terms
| of Vi, V., V,, as By ¥, ¢, and T can te shown to have
: the following form:
- av dav av
: ) X _ o ¥ z 3 [Lxe)T]1/2 da
(1-0%) g5 - B 3% oY 3Tt i ] at
3 = (G, +way)m (137a)
1
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along
.g_% = + [T/m' /i + ¢) 1172 ; (137p)

R dV av 11/2

o () gl ey ¥ [Bell] T g
= (Gny + W B v)/m', (138a)
along
P RV s
and
dV dav av -
L.Y_Z7 -i/2 4T
O.t + B dt + dt + (mY) t
= (@ -wv/ms /P (e - e - )/,
+ S (T, ) 1+ 5t s (139a)
along
ds _ , (vm)/? . (1390)

at
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Here we have let

[}

m‘

e S

m+m, o, (140)

T

for convenience. The terms an and Gny denote the x
and y components of the vector & - ; GT . The term &i
denotes a residual of secondary importance which will
hereafter be ignored; it is given in Appendix C and the
justification of neglecting it is discussed.

The quantities G and (}.r in terms of

Ynx’ “ny
Cartesian variables are as follows

G =201 -e®)U - V,) - as(Uy - V)-ay(U, - V,)]
+ T [8(U, - V) = (U, - V)]

+ (mg+m) [(1-0*) U, -apUy-ayU], (18la)
Gy = A[-aB(U = V)+ (- 82)(U; V) - gv(U; - V)]
+ Tyl - V,) - a(U, - V,)]

+ (mg +m) [-aB Uy + (1-p2) Uy - By ], (ib1p)

G = my (a U +8 U, + v u,) . (141c)
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In the evaluation of A the term IUn - V| now must be

determined from the relation

r=]
[
<
il

{[(1 - a®)(U, - V) - ap(U, - V)

a¥(U, = V)1 [-aB(U, - V)

+

(- 8)(0, - V,) - 5y(V, - vz)f’}l/?. (142)

Equations (137) to (139) plus (118) and (119) involve
the prognostic variables Vx, Vy, Vz a, B> T, €, and ¢, -
All other dependent variables like ¢, vy, ¥ are related to
these through the appropriate diagnostic relations already
stipulated. The Cartesian form of the relations have the
advantage that the relations remain determinate: when ¢
or B vanish {i.e., @ = 0). Moreover, they do not require
the evaluation of trigonometric functions, which can be
of economic advantage in sequential numerical integration
operations. However, {137) to (139) do have the disadvantage
that the time derivatives of Vx’ Vy, and VZ enter in
all relations. This implies that the numerical integration
procedure based on (137) to (139) is more complex than that
based on (115) to (117). Clearly this is the price one

must pay to be assured of a determinate system under ail
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conditions. The numerical method of solution based on the
method characteristics for the Cartesian variables is
outlinedin the subsequent section.

It will be remarked in passing that relations (137)
to (139) can be derived from the original equaticns of
motion in Cartesian form by a procedure simiiar to that
outiined in Appendix B. This procedure in fact was em-~
ployed by the writer as a check on the transformation

discussed above, but for a less general case.

7. Numerical Procedure Using the Method of Characteristics

We consider in this section a numerical method of
evaluation of the prognostic variables which is adaptable
to high speed digital computers.

Let Q(Jj,k) denote any of the dependent variables

at discrete values of s and t defined by

sJ J as. J = 0, 1, 2. .. .N
(143)

tk = k at, k = 0, 1, 2. . ..

where As = L/N.
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The set of prognostic variables includes Vx, Vy’
Vz, a> B, T, €, and ¢,. It will be supposed that each
of these is stipulated for each j at k = 0 as initial
conditions. The strain ¢ can of course be obtained from
(120) and the initial position coordinates x, y, z for
each J can be obtained by simple numerical quadrature
using (135) with the condition x =y =2 =0 at J = O.
Alternatively we could supply X, ¥y, 2z for each j at

k = 0 and evaluate a, B, ¢ using (135) then get T

from (69). The main point is that only eight of the above
variables can be specified arbitrarily at time zero.

As end conditions at the sea bed we consider that
x(0,k), y(0,k) z(0;k) are zero for all k. For the upper
end conditions we will, for the time being, suppose that
Vx(N,k), Vy(N,k), and VZ(N,k) are specified for all k
as fluctuating values with zero mean value (no net moticn
over an extended period of time).

The discussion of the computational procedure at a
general time step is facilitated by reference to Fig. 16.
We assume that Vk, Vy, Vz, a, 8, T, €, and ¢, have
already been evaluated for each J at time level k.

We wish to evaluate these same variables at the next
time level k + 1 for a common value of J (poirt B).
The lines AnB, n=1, 2. . . .8, denote the character-

istic paths with slope ds/dt = (-l)n+l £, associated
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Fig. 16 Schematic of the characteristic paths
in the discrete s,t grid.
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with the eight different prognostic relations obtained
from (137a), (138a), (139a), (118a) and (119a). Specifically

Cﬁ for n=1, 2, 3, 4
i Cn = C;; for n = 5, 6 (144)
g § 0 for n=17, 8
where
Ct o= (T/u' (1 + ¢))*/? (1452)
¢t = (/)2 (145b)
Y = K+ bT + bK; € . (145¢)

The subscripts on C' and C" imply appropriate average
values of thesc variables for the path in question, the
first estimates being interpolated values at the points

An.

T

The numerical computation scheme described beiow
involves a successive approximation procedure similar
to that employed by O'Brien and Reid (1967). This
scheme requires appropriate interpolational relations for
the variables at points An‘ Let a, represent the values
- of s/ps corresponding to points An. If the Cn are

appropriate average values then
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)
]

o i+ (-1)" ¢ at/ss. (146)

For values of j near the end points it is possible for
a, to fall outside the admissible range of Jj. In this
case special procedures are required and are allowed for
in the following discussion.

Let Jh be the integer truncation of a, such that

if a, > 0,

J, s & < J,+1. (147)

0 <= a < N, (148)

then a given variavle Q can be estimated for points An

by linear interpolation as follows:

Q(a, k) = (a,-J)Q (3, +1, k)

c (3 +1-a)Q (3, K). (149)
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J= N T“—
é é :
:
)
&
;
A> $ ?
|
1 -? -
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' ! t :
| = *’ ;
=0 4 /b i |
k An k+1 k K+1
a1<0 or a5< 0 a2>1\3 or al.+>N

Fig. 17 Schematic illustrating special conditions
for the characteristic paths near the end
points of the system.
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If (148) is not satisfied, this implies that the
characteristic line in question intersects the boundary
J=0 or j=N at k + [ where O < bn <1 (see

Fig. 17). The value of b~ can be evaluated from

o
I

L= (e, -9) (2 - 9) . (150)

where J

e 0 if a, < 0 or Je =N if a, = N . The
value of variable Q at point A, (Fig. 17) can be

estimated by the interpolational relation
Q (Je, k+b) = b Q (3g> k + 1)
- 1
+ (1 EQ Q(Jg k). (152)

Clearly this requires that Q be known at the end points
for the time level k + 1. Accordingly the calculations
of all eight piognostic variables should be carried out
for the end points first, making use of the end ccnditions
to replace those relations corresponding to characteristic
paths for which a, falls outside the allowable range.
The discussion of the numerical versions of the

prognostic relations is greatly facilitated by employing
the following index notation to represent the prognostic

varisbles :




Q, =

wnere m =
and so on.

of the type

1

where B(A_)

variable con

time step appropriate to path n.

U (A,)

while for n

q, (4,)

3B (3 k+1) +B (A)) [ (3, k+1) -a (A)1/st_ ,

107

{V b \ 3 VZ’ as B, T: §, 60) 3 (152)

1, 2, « « . 8. Thus @ = V,, Q = V .

X ’ y
The prognostiz equations all contain terms :

B d Qm/dt which can be approximated by

denotes the value of the

or Qm(An)

cerned at point ’An and th denotes the

Specifically for n odd

Q, (a5 k) if a, 2 O
(153a)
Q, (0 k+ 1) if a < 0,
even
Q, (a,, k) if a, < N
Q, (N, k+ b)) if a =2 N, (153b)
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or

eight unknown Qm at j, k+ 1.

in the systematic form

8
Y Mo (3 K) @ (4, k+1) =
m=1 ’ "

e e e s g i < e vomtrss e e s T e SERESRE T

0 < an < N

(153c)
a, < o,
a.nz N .

By employing the above approximations in each of the
prognostic equaticns (137a), (138a), (139a), (118a) and
(119a) we obtain eight algebraic relations for the

These can be .ritten

Pn(j:k) ’ (15)4)
- for n=1, 2, . . .8. The matrix of coefficients Mo
= 2
= and the terms P, depend upon the varizbles Q, at
= level kX and level k + 1. These functions are given
- in Appendix D. We note that the matrix M has the
= L )
=, following structure:
= [
o
SN
Ty
Ji-i
B
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AP RIS M

ARSI
!
1
¥

BN A M1 MRS L e S AN
S,

@]
O O O O

0o N O & oW o
=
=
=
o O O O O o ¥
©O + O O O O O O
H O O O O © o O

' 1 2 My .
51 52 Ms3 ° -
i | Moy  Mg2  Mg3 ° ¢
= 0 0 0 0 0
0 0 0 o o
Thus (154) can be reduced to the simpler system:
. 3
Y on o+ Mop g 0) @ = (Bpp + Py (1552)
m:l -'
3 :
Q3 = (Poy - Ppog) 'mzl‘%,m - My am) @ (3550) :
for n=1, 2, 3; and
Q@ =P, 9 = Pg . (255¢)
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kelation (155a) represents three equations in the three
velocity compcnents at Jj, k + 13 this set is easily
solved by elimination cor by Cramer's rule. Once @, Q,
Qs are obtained, then q, B, T are readily evaluated
from (155b) and g, ¢, are given by (155¢).

In carrying out the calculations it is understood that

bticiiniisntl KREIHHGIIGE

first estimates of the Cn’ Ph’ and Mn, are obtained .
by taking Qm(j, k 4+1) on which they depend (Appendix D) i
as the values Qm(j,k). Relations (155a, b, c) then give :
first estimates of Qm(j, k + 1); the latter are in turn
used to re-evaluate the terms, Cn, Pn, and Mh,m. Re-
peated use of (155a, b, c,) with the new coefficients, ;
then ylelds better estimates of the Qm(j, k + 1). This
process is repeated until the difference of successive
estimates is less than some acceptable fractional error.
Three or four successive approximations usually suffice
for sufficiently small time step At (O'Brien and Reid, )
1967 .

At the end points j = 0, N we have assumed that the
velocity components are stipulated. At J = O we employ
only those prognostic relations for which a, 2 G. These
correspond to the partial set n=2, 4, 6, 7, 3 of
relation (154). Since the velocities Q;, @, Q are

given, one can easily solve for the remaining unknowns.

TR AR Bkt s

W
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At j =N we must employ the prognostic r lations for

SRR YR, oy

which a < N; these correspond to the pa: .al set
n=1, 3, 5 7, 8. As pointed out previou vy, the
calculations for j = 0, N should preceed t: “se for
intermediate points.

When all eight prognostic varis*les have been

calculated at time level k + 1 for all j, then the

PN N 42 AT IRy 240

. position coordinates x, y, z for each s at this time

level can be evaluated by simple numerical quadrature

using the relations

Ms = (L+e)a

dy/ds = (1 +¢) B ]

(156)

BZ/BS = (1 + e) Y §

i 1/2

1 vy = @Q-@ -g)V ;

: with the conditions x =y =2z =0 at s = O. :
k- : The whole procedure is then repeated for the next

time level. This process is carried out for some pre-
selected number of iterations, depending upon the time

é span of interest and the selected value of At. The only

: limitation on At and aAs in this method is that of -

accuracy and resolution; the method if inherently stable. 2
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2
2 Accuracy is improved in principle by selection of small
i .
= values of both as and at. However, cconomy of computation
=
= f B . . S
¥ g plus recognition of accumulation of round-off errors
implies some compromise value for these parameters. It
is recommended in such computations that As Dbe taken as
about 100 feet and that At be of the order of 1/10
second. These values are based upon the considerations
of the possible modes of motion treated in Chapter VI .
via linearized perturbation approach.
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8. Generalized Upper-End Condition

In the preceding discussi-.;c it was assumed that
Vx, Vy, and VZ were stipulated as a function of time at
the upper end of the line. A more general condition was
implied in Chapter II (section 5), in which the dynamics
of the surface vessel is taken into account. The purpose
of this section is to show how such conditions can be
imposed in place of the simple upper conditions of the
preceding section.

Let q} (1 =1, 2, 3) Genote the three Cartesian
components (x, y, z respectively) of the anomoly* of
transictional velocity of the center of mass of the
surfaée vessel, and let Qi denote the Cartesian components
of the anomoly* of rotational velocity of the vessel. It
will be assumed that the x-axis is taken such as to be
parallel to the mean orientation of the longitudinal axis
of the vessel. This will correspond to the mean orientaiion
of the surface current for normal mooring with a single line.

Then in the notation of Section 5, Chapter II, wve
require, for the case of single mooring line, that along

ds/dt =0 at j=N (s =1L):

+ These are anomolies from the velocities which the
vessel would have in the absence of the mooring line.

= Rz
5 ; .
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3
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=
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(157)
{(158)
dq!
l p—-sg - -
a = [-ToyM -28, q
- O'iz Rj'_ + TO Tio/Mi] ’ (159)
dn!
L -
T = -9/, -238a! -
- 04% ¥ + Jﬁ?/ii] s (160)
where i =1, 2, 3; and
V = q'+q' x 2° + F(t) . (161)

In (159) 74 @are the Cartesian components of the unit
vector ; (previously designated g, B> v).* The term
ﬁ(t) is a prescribed vector function of time denoting the
potential velocity of the point of attachment of the

mooring line on the vessel, in the absence of the moocring

* The reader is cautioned that there is a potential
ambiguity in the semantics here; the scalars a, Bs A
have a meaning quite distinct fvom the vector components

@3> B3, Ay of Section 5, Chapter II.
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line. In terms of the notation of Section 5, Chapter II,

44 £ N ITIIANY e o

F(t) = i + & X P°. The terms J; are the Cartesian

components of a vectors torque which depends upon T, -

and the angular displacement of the vessel (see Eq. (31) ).

et 22204

One can readily write finite Jifference counterparts

of relations (157) to (160) analogous to those for the

prediction of g. These allow the evaluation of the
. vector velocity at the new time level via relaticn (161).

Having the velocity components at the new time level for

J = N then makes the system equivalent to that described

i Wy

in the preceding section. It must be noted, however, that _ i

the prediction of qi and Qi depenid on the new T and

~
»

v at j = N. Hence a successive approximation procedure
is required similar to that described in the preceding
section. The initial conditions on the components
Ri, {, qi and Q{ must be prescribed. Bear in mind,
however, that these variables are pertinent only to the
single position j = N.

The generalization of the above procedure for the

case of multiple mooring lines is straightforward following ;

the system indicated in Section 5, Chapter II.
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VI. LINEARIZED PERTURBATIONS RELATIVE TO
A COPLANAR EQUILIBRIUM CONFIGURATION

v Ao e ks om0

BRI o D

1. Dynamic Equilibrium State

The oceanic current U in general consists of:
(1) a quasi-permanent horizontal flow which decreases

slowly with increasing depth; (2) horizontal tidal flow

which is nearly uniform with depth -but changes slowly

CRHEEE It T et

in direction and speed with time; and {3) rapidly

L fluctuating three-dimensional motion associated with

] surface gravity waves. The latter phenomena, which has
a spectral band width from about 0.3 to 6 rad/sec, is
confined tc a relatiVely thin surface layer. As a

practical approximation we will suppose that the wave

B ogiertine W ierbae s
)
B ‘

motion, while directly governing the motion of the vessel,
does not directly influence the mooring line. In effect,
. we are implying that the fluctuating part of the current

n U is confined to a layer comparable to the draft of the

) vessel and that cver the bulk of the mooring line the

fg current can be considered steady, at least for durations

HE of the order of one hour.
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On the other hand the line itself is not static
but is in a continual fluctuating state of motion in
response to the motion of the vessel to which it is
secured. Now the drag force is non-linearly related to
the relative motion (ﬁn - Gn) of the fluid with respect
to the line. Accordingly the averzgze# configaration
of the line (or lines), for given steady current U and
a stochastically stationary time sequence of ship motion
with given variance, will not in general be the same as
the steady state configuration of the line with the same
current B but with the ship fixed in its mean position
(i.e., no wave action). The effect of the fluctuating
motion of the line, even though its mean value is zero,
is to produce a greater net drag than that due to ﬁ
alone. This can be guite marked if the amplitude of
% exceeds the magnitude of ﬁ.

Since the average configuration depends upon the
perturbation of the line through the non-linear drag
force, we will refer to this configuration as the dynamic
equilibrium state. It will serve as the reference state
in the definition of the perturbation variablers of the

system. In particular we will denote all reference

# If the motions of the line are stochastically
stationary then time averages are equivalent to expected
values in the probability sense (Wiener, 1950).
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state variables by a bar over the symbol. This can be
interpreted as the average value of that variable at
material point s for an ensemble of possible con-
figurations associated with the current & and a
stipulated ensemble of ship motions.

In regard to the current ﬁ, we will suppose that
(below the vessel) this is not only steady but also
horizontal and coplanar at all depths. Accordingly, if
the statistical distributions of the component velocities
of the line have zero mean value and are symmetric about
their mean, then we should expzct that the dynamic
equilibriun configuration will lie in a vertical plane
parallel to the current ﬁ. Actually this also assumes
that the mean force exerted on the vessel by the combined
action of currents, waves, and wind is in the sam.
direction as the current. We will take the x,z-plane
to coincide with the plane of this dynamic equilibrium
configuration.

Specific relations for JdT/ds and Jg/ds for the
mean state are given in the folloﬁing section in which

tne perturbation equations are derived.

e o FERATE . L L




L T~ 2t i

g st SRR
RSOGO SR AR AR A

NGRS (AL NS

PN

st o < AN 4

ISR PR

o

119

2. Quasi-Linear Perturbation Equations

The eduations of motion expressed in a natural
coordinate system based on the mean configuration of the
line are the most convenient for analysis of perturbations
of the line. These can be derived in a manner similar
to that employed in section 3 of Chapter V. In formulating
thesc relations we must be careful to distinguish between

an instantaneous vector: like ¢+ and its mean value for

material point s. Since the overbar notation is combar-

~

some for vectors, we will denote the average vector

~ A

as 1, at given s and similarly for ; and py. The
mean unit vectors ;O and ;o lie in the x,z-plane
while ﬁo is parallel to the y-axis.

Let V.. V&, V; hereafter denote the components
of V in the fixed local coordinate system defined by

the vectors ;o, ;o’ ;o at point s, With this

understanding the vector acceleration is simply

a% aVJ - ove ov' .
F* = St Vo TITiMe T o - (162)

-~ ~ "~

The vectors vy, pos 17, @are related to the Cartesian
reference vectors by the following relations in analogy

to (88) with ¢ repiaced by § and ¥ = O:
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; vo = 1cos g -ksin¥b,

T = 1s5inT +kcosg .

= Now let ¢, a', ;' denote the perturbaticns of the vectors
= v; W T 1in sense that v = vy, + v', etc. It will be
g understood that the perturbations are small, i.e.,

- |vt] << 1, |u'l << 1, and |7'] << 1. If we also let
%E ) 8' and &' represent associated perturbations of @

and & where |6'l <<1 and |#'| << 1 then we obtain

the following approximations based on the use of (89):

>

"

VU= o cosTE' - 0",

, i

~ ~

u‘ = - \30 CcOs .e- ! -~ To Sirl _e. 1 .9 (16“)
; “ 1 = ;O e' + ;jo E‘m .B_ Q ! L)

%—i; Now referring to (15) we note that the term

1 ) - aVT/bt can be approximated by ;o BV_;/Bt neglecting
products of perturbation quantities. Moreover, referring
to (105) we see that the quantity U°d:/0t is of second
o
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order if U is of order V or less. Thus (15) reduces

approximately to

- . ov! - A a
(m+ma)g%-ma1-°#=-a—%s—'r)--wk+c}. (165)

Now consider the first term. on the right-har< side of
(165). Letting T = T + T' where T!' << T and

7 =1, + 7' we obtain after negiecting quantities of

second order:
ALa) e S (T3)+& (Tr) +3 (T 5).  (186)
Now from (163) we find that

-]
To&:

oLo/
1] b
I

%gn- =0 , (167)

81:’»
I

<
()

Q/
218

Hence using (164) and (167), relation (166) takes the form

T e e
o
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Now using (162), (183), (165), and (168} it follows

that the component relations associatad with (165) are

BV ] -— ~
(m+ma)—§3é——=-’l"%g-+é%-t)-+’r'§%+wsin'e_

+G ¢ v (159a)
avu’ a — — - -~
(m+ma)-a-£-—= 55 (Tsing2') +G %y - (169b)
V' & o =~ % = A
m—é-tL=-Fs-+§§—-Te'%%-wcoss+G-7° (369¢)

By definition the mean values o. the perturbation variables

are zero. Hence by averaging (1%9a, b, c) we get

0 ="i"§g-+wsin-e'+é‘\3°, {1702)
O < é * ‘:c K] (17Ob) °
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W cos § , (170c)

1
&1

-~ ~

the average of G * 1, being zero. These are the relations

IO
WG TR LA ISOIN s - bR R e

? defining the dynamic equilibrium configuration. g
4 § The vector G was defined by (106) and (107). We
? % . nove, first of all, that this simplifies somewhat with
; % - a%yat = 0., In order to put the remaining part in a
L tractable form we will take i
; U_ - {rn  (Ucos®-V,") v + (- v." ue - (171) }
| s Furthermore,“the term T 1 x (U, - V) will be approxi-
o mated by T r, X vy, U cos g. This implies that "strumming" i
% ; of the line by vortex shedding is allowed only in association %
% g - with the steady fl»w U, wnhile that associated with the %
- | oscillatory motion of the line is neglected*. Accordingly %
we have .
6+ % = 00 05 T - WP 4 (v nF
x {(Ucos g - Vv') (172a)

*Indeed the phenomenon of vortex shedding is some-
what confused in respect to oscillatory relative flow.
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G g = £f{{Ucos® - v,") 24 vu')e]l/é [ -,
+ n U cos g cos (ws t + 35)],
G* 1o = O,
where
£ = (p/2) C4D (L +7%) .

(372b)

(172c)

The latter coefficient can be expressed in the alternative

form

where 5} is the displaced mass of water per unit

materiali length.

(173)

The residual equations of motion are obtained by

subtracting the corresponding relations in (169) and
(170). For convenience we will use the abbreviated

notation

Y e - A e TS, - T AHED
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g' = sing &', (174)
G,'= G v -GV,

\ (175)
Gu''= G - M, .

The term g' 1in fact represents the perturvation of the

y component of ¢ as defined by (132). The resulting

dynamic perturbation relations are:

My' _ g 38
8
m' 3 < ase +Th st Gv‘ ? (1762)
ov, !
JgT g!
ov_! —
o T! = O -
n =5 - TH- (176¢)
where m' = m+ m,. The relaticns (176a, b) are only

quasi-linear since the terms Gv’ and Gu' are, in
general, non-linear functions of the normal components
of velocity of the line. All other terms are linear
functions of the perturbation variables.

To these relations we add the following linearized

versions of the kinematical relations (93) to (95):
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s Ppa—

QC+D)F - v, R (177a)

,
!
o
Q/
<
<
oY
)

N e s

cV !

1+7) - (277b)

d
.
.
-
2
;{
a
&
"
be
-
3
2
-
k-
-

HCm 5 o

ov,. ! —
Ot T Pe) -
Cin e = T - VV'§S. . (177c)

HARR L i

Finaliy the linearized versions of the load-strain relations -

(69) to (71) are taken as follows

R e a0

| nE - (-5, (178)

TEALTE Py et

T

T = YO 6' - K& g' 'y (179)

2

: where ¢, 1is regarded as a constant (the maximum tension

Mk AR A

being assumed such that ¢, > F (Tmax))' In the above

T e

relations e¢' = ¢ -¢, E' = E -E vwhere § = ¢ - g

R

™

2 and

St ar i s 5 4ore

Y = K+bT+dbK T, (180)

which represents the dynamic spring coefficient for the

mean conditions at s.
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3. Ascociated Perturbation Energy Eguation

If we multiply {(176a, b, c) by V&', Vp' and
b

Vr' respectively, then multiply (177a, b, c) by T 6!,
T g!', and T', then multiply (178) by =K, (e¢' - E')/r,
and add the resulting relations we fin? the following

energy relation after using (179) and collecting terms:

%‘E {[% m? (Vvta _!_V“ta) +-]2—“-mVT'3]

+ [%YO 6'2-1{16'5""%}{1 g!2]

L 4

+ [3Q+T)T (or= + stz)]}

= %;[ T (! vv' + B! V“') + Tt V. ']

+ Gy' V' + G“' Vﬁ' - ;}-(e' - gt)2 | (181)
Comparing this energy relation with (85), it appears
that we have intrcduced a new form of energy term involving
(8'2 + g'2). Actually the last two sets of terms in
brackets on the left sid.: of (181) represent dynamic
elastic energy associated with the perturbation. Only
part of the anomaly of elongational strain is represented

in the term ¢'; it is that past related to motion
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parallel to the reference configuration. If transverse

waves exist relative to this reference, then second order
elongational strain occurs which is proportional to

(86'2 + B'2), Thus the term (1/2) (L +%<) T (8'2 + g'2)

is the elastic energy associated with transverse perturbation,

while the term
[-JQ;YO 6'2 —K1 e! € +%K1 gta]

is the elastic energy associated with the longitudinal
perturbations. Note that this will always be positive
as long as Y, > K, which is certainly the case (see
Chapter III).

We note that terms involving the curvature of the
mean configuration (9§/0s) which were present in {176a, c)
(177a, c¢) have no contribution in the above perturbation
energy equation. These terms lead to coupling of, and
hence energy exchange between, the transverse and
longitudinal perturbations but do not account for any
loss or gain for the total dynamic energy budget. On
the other hand, the last three terms involving drag affect
and hysteresis indeed do significantly influence the

total energy budget.
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If the perturbations represent a stochastically
stationary process then the average total energy is
constant in time (or at least only slowly varying)
and hence the average of the terms on the right side
of (181) should produce a balance. The drag terms are
particularly significant in this balance of energy loss
and energy gain per unit time. This will be considered
in a statistical sense in the subsequent section.

: €
L4, Statistical Considerations of the Drag Force

In order to arrive at a rational approximation
of the highly non-linear relations for the drag force,
we will consider certain critical statistics associated

th this force for a simple, yet realistic, stochastic
model of the line motion. The motions of the sea
surface and of the surface vessel, in response to the

surface waves, can be considered to represent a Gaussian

process in the first approximation (St. Denis and Pierson,

1955). We will suppouse, moreover, that Vv' and V'

are aiso of Gaussian character. The principal additional

assumptions are that these variables are statistically
independent and that they have the same variance o2
and zero mean value. In general o¢2 will vary with

position s on the line. The assumption of equal
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variances is perhaps the most stringent of the assumptions,
but considerably simplifies the analysis of the statistics
related to the drag force.

For simplicity of notation in the present analysis

we will let

Ucos® =X,
Ucos g - V' o= x, (182)
V' =y.

Since Vv' is assumed to be Gaussian with zero mean and
variance 02, then x 1is Gaussian with mean X and
variance o02. Moreover the joint probability density of

X and y, in view of the foregoing assumptions is -

“lx - %) + y21/ 2 o?
F(x, y) = Er"ng" € . (183)

In the above notation, the component of G in the

L3

direction vo 1s

G.vy = © (x@ +y2)"2 4. ‘184) ~

- s e emme oo - s




N Its mean value is given by #

-1 {x - %)? + y21/2 @2

f ~ lf‘
G +Vy = 353 fT (%2 + ¥2) /% e

- dx dy. (185)

(k2

By making the transformation X = r cos g and

Y = r sin q, the integral 1is converted to the form

. R ® 2 -{r® + X2~ 2 X r cos ¢)/2 o2
G * v = e J f ™ cO0s g €

s o ¢

. ax 4r . (186)

E T This integrsl can be evaluated in terms of known functions. )
The result is

’i :

. G vy =t [T e

‘ G+vy, =T 5 5 ¢ e -{(ga + 3) Io(gz/u)

= . !

= £ ) BeA) b (187)

where

# Ve are ignoring any variation of drag coefficient
with velocity in this analysis.

&~

USRS SR NP
[

S e s n e . W . wrw - mvm o ——— - - ———— ™ PN




g e s e e e R - B PO - - -

132

e e oyt b i Dt vt e it gt

¢ = x/o = Ucos p/o,

% o ‘/V 7 = ‘/V-}é )
H v u

and I,(z), I,(z) are modified Bessel functions of

(188)

order indicated. From the properties of the latter
functions it is readi}y shown that the mean drag force

has th2 following limiting forms .

( - -
f (Ucos g)2, for Ucos g > ¢

\ a"\)o = < (189)
o %@chcos_a-,forUcos'é'<<c.

-

In the latter case, it is e#ident that the standard

deviation (o) of V,' or Vu' has a very definite

control on the curveture of the equilibrium configuation -
through relation (170a).

Another quantity of considerable concern is the

. -

mean rate of energy dissipation by the drag force. This

i is given by

kbt h S ikantang xSt

D = f[(Ucosg - V'v')2 + (vut)a]l/é [(V§1)2+(Vht)2] .

on v A e

prose

(190)
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g In terms of the notation (182) this can be written in the

g i
i form

|

i

: P = fr[(x-?c)z-;-y;j

i = f(rP+¥x¥T-2%xX7TXx), (191)

& *

::j a 2 1/2 3 . . Y
3 where r = (x® + y2)™/“. Again using (183) to ev.-uate

o the averages in the above relation we find

- H
b e to [T R (@13 T, (M)

+ ¢ L (¢2/M)] , (192)

(AR TN SN

where (¢ 1is as defined in {188).
- ' We can now define an effective dynamic drag coefficient

f v such that

D= £v (V2 +V ") . (193)

% |
3 Now Vv'z = VM'2 = 02 in the foregoing analysis
and hence i
%; k3
3
E

R e -
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&
Er;
-
E
s
3
E
k-
3
>
3
N

v o= 3 J—% e "2/4 (2 + 3) Io (¢ /4)

1PV T PO T AR
| a b AR e e S A M 8 A 5 ¢ WS e SRS ek b M WN T

+ 6% L (¢2/4)]. (194)

%
| This has the limiting values .
i
H - _ _

U cos g, for Ucos g > ¢

v = <
% \/% c, for U cos g << 0 . (195)
A plot of v/0 versus ¢ 1is shown in Fig. 18. This

indicates a very rapid transition from one limiting
3 .

form to the other, centered at ¢ = 5 \(3 = 1.88
(i-e., Ucos§ = 1.88 ). The behavior of the function

r= ot gorae > v bk oy

G - :o /f o2 ¢ is indistinguishable from v/o for all
practical purposes.
Based upon the above analysis we will adopt the

following approximation of the components of G :

o))
5

= fv (Ucosg - Vv') , (1962)

Q3>
T
o

u

‘-fvvu'+nvacos‘6cos (wg t +8) . (196b)
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G' = -fvvVv? 1
Y Y (197)
where Vv 1is at most a function of s. This approximation
with v as given by (19%4) leads to the appropriate mean
drag and also the approﬁriate rate of energy dissipation

by drag force.

5. Perturbations of a Nylon. Mooring Line about a

Straichf Equilibrium Configuration

In the case of nylon line, the net weight per unit
length in water is negligible and can be ignored for all
practical purposes. From (170c) this implies that T
is essentially uniform over the whole line. Now from
(170a) we find that the curvature of the equilibrium
configuration is given by the mean drag force per unit
length divided by T. If the latter is large, the mean
configuration will tend to be nearly straight. In this
limiting case of negligible 0p/0s, there is no coupling
between transverse and longitudinal osciilations of the
line. Hence, these modes or oscillation can be analysed
independently. We will consider this situation in the

present section.
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In the considerations of the transverse oscillations
we will examine two limiting cases in respect to the drag
force. These are the cases where U :05 9 > 50 and
Ucos g < 0.50 (see Fig. 18). 1In the first case the
term v is independent of ¢ and the problem is entirely
linear. In the second case Vv 1s directly proportional
to o which in turn is a funetion of s dependent upon
the statistical behavior of the solution for VV'.

Clearly the latter case is a non-linear problem which must

be treated quite differently from the first.

Case A. Transverse Mvdes (U cos g > 5¢): 1In

this case v = U cos g, which will be treated as a
constant, at least over that portion of the line where

the transverse oscillations are significant. For realistic
values of f v, - we will find that the transverse modes

are not significant at depths greater than about 1000 ft
below the vessel and hence the approximation of uniform

v seems Jjustifiable in respect to the analysis of these
perturbations.

With uniform T and zero mean curvature, reiations

(1762) -and (1772) reduce to

G

RN~ 1.

Rt 2t T TIR

VENAT i bid

;17

4

e




Ea e dpiupen - SR a5 Woapnpuahdat A

ov ! _ 391
m'-&l’—-éT-gg--vav',
(l+z) .é—e_‘.. é.w—v R

ot os

Eliminating 6' Dbetween these relations yields

v, PV e, AV

ot? Clz 0s m' ot ’

where

6 = (F/mr (1+)Y?

This has elementary solutions of the form

where
k2 = (v -1ifvem')/ne?.

If ¢ 1is regarded as real then k has the roots

(199)

(200)

(201)

(202)

(203)
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k = x (x-1y) (204)
where
X = lkl cos 0./2
uw = |k| sin @/2 (205) :
in which

k] = of 1+( v/ w)21 %0 (206)

and

« = tan™! (£ v/m' w) . (207)

Note that * 1is an odd function of y while y 1is even.
A more general solution is obtained by forming a
linear combination of solutions of the type (202) for the
two admissible values of k for given . Such a
soluition satisfying the condition V&' = 0 at s = 0

for all t is

[
.

o




E 110 g
- Vv' = A [eM® cos (wt + *s + p)
|
‘ - e"H® cos (wt - *s + p) 1, (208)

-
e
! in which we have allowed I'or an arbitrary phase angle p.

! A
3 : The first term in the brackets represents a progressive
'E wave traveling downwards along the mooring line, its -
g amp®itude decreasing exponentially in the directior of !
.E i travel. The second term is a reflected wave traveling
3 i :
3 ; upwards along the line and attenuated exponentially in the
|
2 direction of travel. .Lf the attenuation is sufficiently
j ; large, or the line sufficiently long, then the reflected
g i wave may not even exist. The amplitude of Vy' at
<L )
! the position of the vessel (s = L) can be shown to be
é ; given by - f
1/2 f
- ! A (2cosh2yL~2cos 2nL) . (209) ;
3 § :
- - 4 . pl
2 ; If ywL >> 1 then this reduces simply to A e . ;
|
- |
| f
u :
= 1
.y
Lol ,
| ;
Bl R - L F
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Using (173) we find that

C.m
fv 2 ‘4 a ) v
el (7‘_ =T 5D - (210)

For nylon line, the faclor in parentheses is approxict itely
l1/r. Suppose v is only 1 ft/sec and ¢ = 2r/10 rad/sec.
corresponding to a 10 second p~riod excitation. Then

for a 2 inch diameter line

E!_.lHa
=3 B
1)

3.

Using relations (205) to (207) and taking C, = T0O ft/sec
(corresponding to T equal to about half of the ultimate
strength) yields

x = 1.3 X 10-3/ft

0.9 x 10-3/ft . i

g =
ie

The wave length is 2r/x or about 4800 ft; on the other
hand an e-fold attentuation of amplitude occurs in an

arc length of 1/u or about 1100 ft. The atienuation of
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amplitude in one wave length is about 99 per cent. Thus

for all practical purposes, thc transverse waves are
critically damped in one wave length.

The above example serves to demonstrate the extreme
importance ot drag effect on the transverse oscillations.
Typical values of fv/m'|wl exceed unity. In the

limiting case of very large values of this parameter we

find

_ Y1/
(%] ~ |u] ~qlel £v @+ eJ} , (211)
T

for f v/m! |w| >> 1. This situation corresponds to
negligible inertial effect (the term m!' 8Vv'/3t being
negligible in {198)).

The solution for Vv' given by (208) is valid
provided that the excitation at the upper end is periodic
in time (with period 2r/w). A more realistic condition
at the upper end would allow for the representation of
Vv' as a general time sequence with stipulated statistical
properties. We will employ here the Fourier-Siieltjes
integral representation as follows:

-]

V' (L) = Jei‘”t aF (w) (212)

-=CO
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where dF, (w) is a stochastic complex variable having

the following statistical property

dF, *(} dF, (0') = 6'(w - w') ¥ (¥) do , (213)

where §'(x) 1is the Dirac delta function, dF,# is the

complex conjugate of dF;, and ¢, (w) is the variance
spectrum associated with VV'(L, t). The variance of Vv'

at the upper end of the line is
<

62(L) = [ %(0) duw . (214)

The function dF, (w) also has the following symmetry
property

dFl("u') = dF1*(w) s (215)

which assures that the representation (212) leads to
real values of Vv' .
For other positions on the line, the generalizaticn
of (202), taking into account that the waves are essentially
attenuated completely before they reach the anchor

(uL >> 1), 1is as fcailows
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Vor(s,t) = [ oenls m B Gt ws) gp () L (a16)

This reduces to (212) at s = L. From (216) and (213)
we find that the variance of Vv' at any position s

is given by

-]

0,2(s) = I e2u(s - L) Y, (w) dw , (217)

-

where pu 1is nearly proportional to lw}l/Q, see (211).
In the case of transverse perturbations in the

lateral (y) direction, the appropriate equations (under

the conditions of constant T) are

ov !
m'-éé-:’f"%g-l-fvvu‘-}-fvP (218)
ov !
— i
(1+e)§%— = =, (219)

where P represents a random function associated with

the vortex shedding. We can represent this as follows

e
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P = | et gq(w) (220)
where
dQ*(w) dQ(w') = 6w - w') ﬂ:s(w) dw (221)
and
[ 4s(w) du = (nUcos@)2/z. (222)

If the vortex shedding were exactly periodic then its

spectral function would be

v(w) = 8'(]9] - wy) (n U cos @)/ . (223)

However, the above representation for the vortex shedding
will allow some smearing over a finite band width.
Eliminating g' between (218) and (219) and using

(220) yields the non-homogeneous relation

S e s ]
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BV ! RV ! v !

: f \
e Rt R

©

fv J" iwe™® Q) . (224)

-

An appropriate solution is

(- -]
- L i n
vV s,t) = [ (5T ) o (W ns) gp ()
-
. -]
+ I (1+1 m'w/'fV)-l[l _ e“(s - L) + ins
-t

_e-us - ins] eiwt dQ(UJ) , (225)

where

Fpt(w) dF,(0') = 8(w - 0') 4 (v) do - (226)

e

* ot g
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Moreover, dF, and dQ are regarded as statistically

+ Wil

é H independent for all ; this assumes that the input by
: the surface vessel is completely indepdent of the vortex
shedding and vice versa. Considering chat ul >> 1,

the solution (225) reduces essentially to zero et s = O

while at the upper - end we have

E¥ st KA
PR
[

L]

VI (Lt) = Tetar, (o), (227)

which is governed by the motion of the vesscl.

The variance of Vb' at any s 1is given approximately

by the relation

: 2(s) = [ 21D o (u) au

o+ I [1+ (m' w/fv)2]"t { 1-2[(eM (s - L)
2u (s - L)

-us
+ e M%) cos s + e

+ e 2“5} o (u) dw . (228)
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Again considering that pyL >> 1, the above relation gives

essentially zero value at s = O and at the upper end

we get simply

.2 (L) = [ ¥ (v) du. (229)

Case B. Transverse Modes (U cos § < 0.50):

Relations (200) and (224) are still valid for this case,

however, we now have

v £ % \/iz— a(s) (2390)

at least under the condition that the variance of Vv' and
Vu' have the common value ¢ at position s. We have

séen in the previous case that for intermediate and large
deptns below the vessel, the oscillations in the lateral
directicn may actually dominate. Hence the present analvsis
is limited to the upper reaches of the line where o,2
remains comparable to 0,2, assuming that these are nearly

equal at the veasel.
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As before we will employ the representation (212)
fcr the input sequence Vv(L’ t). For other s we then

propose a solution of the form

- -]

Vv' (s,t) = f M (s, w) ei(wt + 8(s5u) aFy (w) » (231)

i -

where functions M(s,%) and N(s,w) remain to be determined.
In order for this form to be consistent with (212) we re-

quire that

M (L, w) = 1, (232a)
B N (L, w) = 0. (232b)
It will be observed that the solution (216) for case A ..

is simply a special case of (231) in which M is an
- exponential function of s and the phase function N
L i is linear in s.
Using (231) and the statistical property (213)
we find that the variance of VV' is given by

@2(s) = | ¥ (s, w) ¥ (v) dv, (233)

f§&—s 8
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PR

where the spectral function ¢, (%) is presumed to be

stipulated.

o gt nE £ T

Relation (231) will satisfy (200) provided

that
- @93M = ;3 [M" + i 2M'N' 4+ 1MN"

M (N3] i f v Mm, (234)
where M!', N' imply derivatives with respect to s. The
functions M and N are considered real. Hence upon
separating real and imaginary parts of (234) we obtain
the following two relations:

1/2
. _ 2 2 E"
N' = *{(Cl) T } (235)
and
!
(M N') = M fvw/m'C?2. (236)
1

Moreover from (230) and (233) we have

ot /
LI Wsow) 42 () @0 |- (237)

<
]
ol
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The set of equations (235) to (237) represents a
highly non-linear, integro-diiferential system for the
unknown functions M and N. £2n exact general solution
is not known. However it is possible to obtain approximate
solutions for two limiting cases. These are based upon
the magnitude of the non-dimensional parameter fv/gym'.

For fv/ym' << 1, then inertiz dominates over drag
effect and we should expect that M will be a slowly
varying function of s. This implies that (w/C, )3
dominates over the term M"/M in relation (235). Thus
N' = 4+ /€, as a limiting case. Using this in (236)

leads to
M) = + ¥ fv /m*cC , {238)

whish does not involve ¢y explicitly. Thus M is
independent of y for this case and consequently (237)

and (214) yield

3 /T

v o= 3 Vlré o (L) M(s). (239)

Using (238) and (239) leads to the differential equation

Mo o) = %\/Tg— £ o(L)/m'C, , (240)

v.%.
%

PRT"

TR ¢ GRS

b

PR TR I T

PR
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in which our choice of sign confines attention to waves
nropagating downﬁérds along the line. This assumes that
the line is sufficiently long that the transverse modes are
completely damped before reaching the anchor point (a
rather stringent assumption for this case). A soluticn

of (240) satisfying condition (232a) is
M = [1+4 (L-5s)]"", (241)

where

A, = %\/g £ o(L)/m'C, . : (242)

Finaily, from (233), (214), and the above result we get
for any ¢, (w):

@(s) = [1+ 4 (T -s)1"% o2(n). (243)

Note that the attenuation coefficient &, is proportional
to o(L) according to (242).

For the case f v/wm! >> 1, then drag effect
dominates over inertia and hence we expect in this case
that M"/M greatly exceeds (w/bl)g. This is the normal
situation which would be expected for nylon line. This

implies from (235) that

A At SO R it v
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fﬁ where our attention is again confined tc¢ waves propagating i
downwards along the line (and attenuated before reaching i
3
2 the anchor point). As a generalization of the solution
! (241) we will consider in this case that
o .-n
S M = (144 LT-s5)i, (245)
: where %, and n are to be determined for this case.
o Relation (244) zives the following associated N!
B function
¥ N o= [n(m+ )12 (Qra@-s) )t (266
E
- Substituting the last two relations into (236) and using s
(237) leads to ‘
; i
: n (n+1)172 (2n43) a2 (144 @ -5)]72
. :
1. 3 T 3 = T ':"
= -§ V-§ (f lﬁ)l/m' C12 { J. Ll -
: y 3
’ 1/2 :
-2n :
rap (=817 4 (0) } : (247)
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This relation canr be satisfied for all s if n = 2,

e but only if , (w) 1is a very narrow spectrum centered
at some frequency w,. As a rough approximation for the
case of a realistic spectrum y, (w) we will take w
in the coefficient on the right-hand side of (247) as the

mean value, W0 defined by

i =y | Lol 6 () do. (248)

Then from (247) with n = 2

] , 1/2
wos {3 GV Sl b )

The phase function can be obtained from (246) as

—

¥(s) = V6 2n (1 +2 (L ~-35s)). (250)

Finally, the variance of VV' at any vposition s is

given approxi.. :.tely by

LR £ I i Pl

0 (s) = [1+4 (L-5)]7 o (¥) (251)

LR}

Lelparsamny

for this case, where #&; is given by (249).
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The results for the approximate relaticns for o (s)
for transverse waves are summarized in Table 3. All
cases assume that the line is sufficiently long that the
variance is attenuated to a negligible value at the
anchor point. Also the approximation is made in each case
that the attenuation rate 1is based on the mean frequency

w characterising the spectrum of motion at the top

o’
of the line. The term T, defined in Table 3 is a
non-dimensional quantity in which v 1is either U cos §
or 1.880, depending on the case. The usual conditions
in application, at least for the upper reaches of the

line are for T »>1, 0 > 2 U cos §. An example plot

of ovs (L -~s) is given in Fig. 19 for the following

conditions:
Cd = i » m! P 2 md,
D = linch, o = 2r/10 rad/sec ,
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TABLE 3

: APPROXIMATE STATISTICS FOR TRANSVERSE MODES
g IN THE EQUILIBRIUM PLANE

; Ucos g > 5 o(s) U cos g < 0.5 o(s)

v=Ucosg ! v = 1.88 o(s)
* .
Any T

§ a(s)

1 i
H=35T wm/b1 PR o=

1

e-P(L -S)G(L) o(s) =[1 + &(L ‘S)]-n o(L)

T <1l

roj -

r (L) w_/C

——— pas =g S, —

[} § R - o v e et n

5> 1 | u = 0.707 T/2 R i a=0.286 r(r)+/2 Du
| 1

"4

; ’ n=2

é \ T=7Ffv/mw

s
= ¥
-
g ¥ ¥
s
9
-
s
z
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where U cos g is assumed to be less than o/2 at all
(L - s). This requires virtually zero value of U ror
depths greater than 3000 ft if the results of Fig. 20

are to be valid

Case C. Longitudinal Modes: Relations {176C) and

(177c) under the condition of zero mean curvature reduce to

ov !

n—s- = & (252)
» e ! ov !
A e (253)

which together with relations (178) and (179) govern the
Py longitudinal waves, in the absence of mean curvature.

Also for T wuniform then Y, is independent of s. .

These relations lead to the following differential

: equations for V ' :

3 - Y, asz'}
St { ot2 m Os?

1
T
1

,fa?vT' (Y, - K) &*RV!
]
(3t m d3s2 J

B e T

|
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3 A solution of this relation is ;
i
f v ! A ei(mt + kS) (255)
* T :
H
- where
r*{:! H !
( K = msﬁ 1+ i : . (256)
3 : + 1 wry o ~ 1 *
For most appiications Y, greatly exceeds K,. Under }
this condition, k has the approximate roots
k = & [(u/C) = 1v], (257)
- where A
v = (0/C)(K /2%, ) wry A1 + (uwry )?] (258)
and
G = %o =K L+ m)) A} (259)

e = e vy s T
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The attenuation coefficient v is a small fraction of the

wave number for these modes, hence we must definitely allow

. m -
B o e

¢ for reflection of the longitudiral waves at the anchor

Low ¥4 T

point so as to assure VT' (o, t) = oO.

; The generalized solutions for an ensemde of possible

VT' at L 1is accordingly

V) (s5) = ] (e e d M T S

- eVs o Lot - 8/ )1571/25 b (w),  (260)

g saod BN AR nee S Es o A0 3 HORATa b

£
f where
%

AE*() B () = 5w - ©") T (o) do (261)
and

B = 4{sinn® (vL) + sin® (wL/C,)]. (262)
The function va(w) corresponds to the variance spectrum
of VT’ at s =L, 1its integral over 2il  being the

variance of VT‘ at the vessel. The variance of V_'
1

for any position s 1is given by
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T{. sinh® (vs) + sin? (ws/Cz)

s (w) dw .(263)

sinh® (vL) + sin® (L/C.)

Clearly this vanishes at s = 0 as required by the lower

boundary condition.

From (252) and (260) it follows that

Tl -

+ €

Thus the variance of T!

.-\)s

oo
iw vS
=m - e
\[ T 1wy | €
-0

o1 w(t - S/Cz)] B~1/2 4 Fy (w)

i w(t + s/,)

. (264)

using the statistical property

(251) is, at any position s ,

T1)2

Since

v << w/C,

o | e { R e |

frequencies (even with

cain ve

pproximated vy

4 (w) dw . (265)

and vyL << 1 for the normal range of

L ~ 10* ft), the above relation

4 1 e Dy (R
P

rpeTens

wt

S R T,




FARUE S TRy T S0

i
-
3
r

U A B A

W T

TR T A T L T

T

LHE ) v

PEFSTCIET

kA

Uk

UthE LC gt tao | i i)

it it 1ty Ehe S LI L A M

pral il

T

TR

BB UM L ot

it o

kg e

PR rp e S

bt
N
no

TTF - mzf C,2 cos® (ws/C,) vy (w) dw . (266)
o [(\)L)z + sin=? (wL/02 )2

As a check, we note that if y,(w) is confined to
very small frequencies, implying slow rates of stretching,
then the above relation with the use of (259) reduces to

approximately

T2 = (Y, - K )2 .[ w2 ¥ (w) dw, (267)

e

for any s. Now since w,(w) represents the variance
spectrum for V ' at s =1L, then 2y,(w) is the
T

variance spectrum for elongational displacement of the

end of tae line. Consequently

TP =& [ 97 () d (268)

and

VT = (v -x) & ., (269)
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? as we should expect for slow rate of stretching. Here
: (Yo - K,) corresponds to the quasi-static spring
coefficient, whereas Y, 1is the dynamic coefficient for
the given mean tension T.

On the other hand for a broad-band cpectrum, relstion
(266) indicates the possibility of resonant conditions
L ’ at frequencies corresponding to zero value of the sin

. term. These frequencies are g = + Wy, where
w, = nT&/A, n =1,2, ... (267)

4 For C, ~ 7000 ft/sec and L ~ 14,000 ft this gives

c w, ~ 0 w/2 rad/sec. Near a resonant frequency

cin® (wL/C,) [(w-wn)I4@2]2
(268)

cos® (wL/C,)

I
-

i—i The contribution to the variance of T' at s =1L
due to a resonant response centered at + W, is given

approximately by

Al et isalkl

( !;2 T ‘1'/3 (LL‘) dw ’

5 [(VE)2 + (w = wy)? (L/Cs )2

t

. (209)
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where 1t is understood that g, (-w) = y, (w). Now

wy, 1 ~ 27 if 1, ~ 4 sec as found in Chapter IIIL

for nylon line. Hence near the resonance

v ~ (/2% C o)
and (270)

¢, ~ (Y,/m)/? .

Since the resonant response has a very narrow band width

(of the order of K /Y, 7, rad/sec) we can take ¢, at

3

the value in (269) as a suitable approximation. We

Wy,

then obtain upon carrying out the integration

br Y53 1,

K I?

AT =

v (w,) » (271)

for resonant response at s = L.
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3 6. Perturbations of a Nylon Mcoring T.ine Relative to a

T
)

: Curved Equilibrium Configuration

PO (a2

It was noted previously thrat the longitudinal modes

and the transverse modes in the plane of the equilibrium

o T.
AW

i configuration are coupled to some extent if the eguilicrium
configuration possesses curvature. In the following analys.is

we retain the approximation of uniform T and for simplicity g

AR A Atk v it
PR A i)
PR S AN EA AR X
o e S
.
N

we will also suppose the curvature dg/ds has a uniform
value. The pertinent coupled equaticns are {176z, c),

(1772, c), (178), and (179) in which G ' is given by

(197). In the latter relation we will ccnsider only that

case where v 1is uniform. The above relatic: s then possess

golutions of the form

(V\J" v,_!s 8', T, &', g‘) = (AI: A:_s: Ag: A;: As , As)

t

L’: f - i %) -
& « ci(ks +ut) (272)
provided that tne coofficients A satisfy the fellowing
EAE algebraic relations:
-
< (iwm! + £V)A, = iKT A, + (dp/ds) &, - (273a)
. jan &, = ik A, - T {dp/ds) A, , (274»)
: ig (2 +¢) & =1k A + {da/ds) A, , (273c)
i -
% ip A: = ix A, - (d3/ds) 4, , 273d)
: (1 + iwr, ) A4 = A, , (273e)
J . *
Eo A, = Y, A, -X A, . (273r)

B T
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The last two of these relations yield

1 iwry ) A
A = Y, (§. ++iw('?1))-%(1] ) (274)

The remaining four relations using (274) will lead to

non-trivial values of An if k sstisfies the characieristic

relation obtained by requiring the determinant of the co-

efficients in (273) to vanich. This leads to the following

possible roots for Kk2:

X2 = %(&24-%3)+(&D@ﬂ2
i{"lf (ka2 - 5,2)2 + (2 + 92 + k2 + K2 K2/K*7)
_ 1/2
x(de/ds)a} , (275)
where
K2 = mo? (1+ ¢)/7T, (2762)
K2 = ol +¢)(wm' -1v)/T,

(276b)

. _mu)a(l-}-iw'r-,) “
R L @riem) - K (276¢)

s
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As a special case we note that for dg/ds = O the
two roots for k® are simply k;2 and k,? which
correspend to relations (203) and (256) in the previous
analyses for transverse and longitudinal wave modes

respect” :e.y. For typical conditions:
|62/h2] ~ 1,
|k,2 /92 ~ 1077, (277)
| {(de/ds) /2| ~ 10°° .

Accordingly, in the case of relatively small curvature

(275) reduces approximately to

r

k 2
k2 =<
-1 =2
m' . fv 74e\ ~
< - G- m) \ds) (278)

for transverse and longitudinal modes respectively. One
effect of the curvature is to increase the rate of
attenvation of the longitudinal waves. For the case of

fv/my >> 1

ke = 4 (ofC, -1V, (279a)
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where v!' 1is the attenuation coefficient

- 2
C
vio= v+ A () (2790)

v Dbeing given by (258) and €, by (259). The longitudinal
vaves can lose energy not only by hysteresis; but also by
net transfer to the transverse waves by coupling due to
the curvature. The transferred energy is ultimately
dissipated by form drag.

Returning to relations (273) we find the following

approximate relations among A, A,, Aa, A;, making use

of (277):

For transverse modes:

A = - (i/x% )}{de/ds) A,
A 2 (/e (T +E)) A, (280)
Ayt =~ (imw/k?)(1 + k2/k,2)(da/ds) A" ;

For iongitudinal modes:
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A" = -(i/ (% 3/ 2)(da/ds) A",
A" = o ~(imid/i %) (1 + K 2/ke%)(de/ds) A", (281)

AT = (me/k) AT

Note that if dg/ds = O then A,', A,', and A", A"
would vanish.

The general solutions for Vv' and VT', which
are accurate to first order in dg/ds and yield essentially
Zzero values at s = 0, are

Jiut + ik (s - L

Vy'(s,t) = ) aF, (v)

g 8

‘%‘E‘ﬁz [e'ikl‘ﬁ’ - cos k,‘,s]eiwtdFa (w)

+
8 €m0 8

(282a)
and
Vi(s,t) = [ sinigs el ar,(u)
X L YO (282)

-
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) wiere dF, (w) and dF, (@) remain to ve determined in §
: terms of the representeticns of V ' and V ' at %
= s = L. In the above relations i
F: :
7 k1 = a - iu,

g (283)

ANty bt

where pylL >> 1.
Let

k- ! ©

V) = [ et am, (w) (28la)

-

T

[ atn b ot i i

: T it .
v '(L,t) = r e gH_ (y) (284b)

where :

TR, T T

‘ a, *(w) aH, *(w) = 5'(w - w")¥, (o) du ,
- (285)

aH, ™ (w) dH; (w') 6" (w - w')ya (w) dw . |

In (285) ¢, (w) and ¢, (w) are the variance spectra for

U T R i o

é Vv’ and VT' respectively at s = L. Moreover we
E ‘ will suppose that Vv' and V,.' at s = L possess
S
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a cross-spectrum V¥, ,(w) such that

oH, *(w) dHa(w') = &' (w - ') ¥a(w) du.

If we now eyuate (282a, b) at

S

(286)

= L with 284 a, b)

respectively we can solve for dF, (¢) and dF,(w) in

terms of dH, (w) and dH;(w).

Inserting the resulting

relations in (282a, b) and neglecting terms of order

(de/ds)? yields

Viet) = ] oih(e - ) ghat

dH1(w)

© @ [l {70 o k)

- eikl (S - L)(e-ikiL

and

eiwt
- cos kélasiﬁfi;L dH, (w) (287)

.43 } %1 {eikz (s - L) _ iji.l‘z_s_} ot gy (w) ~ (288)

i
M R R
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The solution for T! +to the same order .°f

approximation can be shown to be given by

T'(s,t)

I

«©

: iw
I My C€OS kgs 1wt GH, (w)
-0

N

11+ K 2/k2) et (s - T)Y At gy ()
(289)

The primary effects of the curvature are: (a) to
cause the transverse oscillations to reach a greater depth
and (b) to produce a somewhat greater variance of T
at the upper end of the line compared to that which
would exist without curvature of the line. At inter-
mediate depths along the line, the contribution to the
variance of Vv' by the first integral of (287) becomes
negligible (as seen in the previous section) and the second

integral gives a residual variance given zpproximately by
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J' |—k“i-:- I° v (w) du (290)

at mid-depths.

It may be remarked in closing that the effect of
curvature is of more significance in the case of steel
cables where the net weight in water produces a relatively
greater value of curvature than for nylon line, other
conditions veing comparable. In fact for nylon -line, the
simpler theory given in the pieceding section in which
curvature is ignored is probably adequate for most conditions.

Further application of the methods discussed herein
would be profitable, particularly in respect to the use
of the generalized upper end conditions discussed in
Chapter II. Unforiunately this is well beyond the scope
of the present study, but it is hoped that the present
study will serve as a useful guide in future research on the

problem of mooring line dynamics.
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APPENDIX A. EQUATIONS OF XOTION OF VESSEL

We wish to establish relatioans connecting the
motion of a moored vessel with the potential motion of
the sane vessel in the same seaway if it were not moored
and not underway.

First, consider the equations of motion for the f

W,’:’n b (faraoaioah bave
(RO M
.
3

unmoored vescel. Let XJ (3 =1, 2, 3) 4denote the three

. Cartesian components of the position of the center of

et s e - Skt LUt N
\

the mass of the vessel (relative to a fixed equilibrium

in

position). Let aj (j =1, 2, 3) represent the com-

ah o

ponents of angular displacement about the mvtually
orthogonal, principsl axes®* of the vessel. Assuming

the vessel is symmetrical about its mid-section, one

HERL O G S

principal axis is normal to the plane of symmetry and

the other two lie 1n the plane of symmetry. Under

- equilidbrium conditions it will be assumed that the

plane of symmetry is vertical and that the longiiudinal
g principal axis is horizontal. It will be assumed more-
over, that the motions are sufficiently small such that
the non-linear coupling effects of the translational

and rotational components of motion can be ignored.

* The principal axes are inhose Tor wihlch {he momont

E i of inertia matr x can be represented in diagonalized form. g

e e e e e e =
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f'o) towing St. Denis and Pierson (1955), the linearized
equations of motion for an vnmoored vessel are taken

as follows (Jj =1, 2, ):

M, d2) ./at? N odan./dr + K, A, =P -

3 A j/at® + B $/4T + Ko PR (A-1)
I. d2q./dt2 & N.' da./dt K.' @: = Hy' , A-D
J ﬂJ/ J d/ RS T J ( )

where the M, are the effective masses or surge, sway,

d

and heave (including the effective addmd mass oI water),

the N

.

are damping coeificirents associated with

. @

drag and/or radia*ion of ship induced waves,

9]

viscou

the K, are restoring force coefficients (iorce per

Cue

unit displacement and the F ' are the components of
d

exciting force due to wave motion and/cr steady motion

of the water relative 10 the vessel. Similarly the

I are tne effective moments of irertia about the

Cate

principal axes of the vessel, ¢tne N.' are damping
J

]

ovefricients, the K.! are res »ring coeificients
s

.

(torgque per radian} and the H_' are componentis or

exciting torque due to waves. It will be understocd

n

pecifically that A,;, X, Ay 3are respectively the

isplacemesnts in surge, sway, and heave,

jd
ct

ranslational

¢t
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moreover, Q,, U,, @3 are respectively the rotational
displacements in roll, pitch, and yaw. Accordingly
K, K;, and K;' are zero; the only restoring forces
b2ing those for heave, rol:i, and pitch.

We can rewrite (A-1) and (A-2) in the form ‘

2 2 . 2 = £ 1 7
d xj/dt + 2B ko/dt + 0 ; A £ (A-3)
ifa . /dt2 + 2B, da./dt + o '* = h,', (A-4
o/ By' dog/dt + 0 1% A b (2-4)
where
v ® N v/2T
Ba J i’
g = .
j J/Mj s
(A-5)
o.' * JK.'\/I |,
J J J
f.v = F_t .
J Jd /MJ
and
h.' = H.' N -
J d /IJ

The four sets of ccefficients aj, BJ', o and oj'
J
all have units of frequency: the B <terms govern the

damping rate for free motion. The natural frequencies
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(rau.ans/second), for tne case where B; << 0,, B, ' << '
and B,' << 0,', are given approximately by o3, 0, ' and
0,' (for heave, roll, and pitch respectively). Again note
that o,, 0, and 03' are zero. It will be presumed

that all six damping rates and the three natural freguencles

for the unmoored vessel are known.

For the moored vessel we must include the effect of .

the tensile force for each mooring line. Let T, (t)
denote the tensile force exerted by mooring line K

(k =1, 2, . . .) at its point of attachment to the

vessel. Let 128 represent the vector separation between

the vessel's centier of mass the the th attachment

point (see Fig. 2 ). Recalling the convertion for T,

we note that the force applied to the vessel by line

-

k 1is —Tk. Likewise line k exerts a torgue given -

by -Py X Tk‘ Let Tkj represent the Jjth Cartesian
component of the vector Tk and let Py j be the jth
component of the separation vector pk, the components
being referred to the same coordinate system as that
for A5 and aj. Then py X T, has the components

Jk given oy:

J
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Jk‘l = (pk2 Tka - pks Tka)
5, - (e, T - P T) (-6)
i, = (px Tk, - Pk, Ty, ) -

Ifwe now let Rj denote the translational dis-
placements of the cent=r of mass for the moored vessel
and wj the angular displacements then the equations of

motion for the moored vessel take the form

2 —_ - -
d Rj/dtz + 284 dRJ./dt + 032 R, = £, Z TKJ/MJ. (A-7)

J J

02 y3/at? + 2B3' dyj/dt + 9512 ¥y = hy -% J,kj/lj (a-8)

vhere ka is given by (A-6) and the terms fj and
hJ are the counterparts of fj‘ and hj' for the
moored vessel.

Suppose (A-3), (A-4), (A-T), and (A-8) are applied

for the same vessel and for the same sea state. Moreover

suppcse for the urmoored condition, that the vessel 1is
not underway. It is reasonable to suppose then chat the

mean values of the exciting terms fj and hj are zero.

i.
!
i
3

£

T
+
§
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This is not true for the moored situation. However, it

wili be assumed that the departures of fj and of h,

J
from their mean values are the same as fj' and hj' 5
i.e.,
£ -T., = t©
J J J
and (A-9)
n -.H. = h_ ',
J J J

We expect that the mean values of the time deravatives

of R, and of uj will vanish and hence
J

&l
[

. 62 R. + Z;T'. .
d J J X kJ/MJ

(A-10)

o
I

. _0-.'2-‘3-_'*'2.3 _/’I.o
J J J K kj J

Consequently from (A-3), (A-4), (&-7), (4-8), [(4-9), and
(A-10) we obtain the following relations inr the  anomalies

of ship motion inauced by the mcoring line:

N
= - T, .Y/ (A-ll)
K
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(62 /4t + 233' a/tdt + cj'z) wj'

= —ZJ _:,/I‘ (A"l?)
k J dJ
where
R.'=R - R, - T '=7T . -T7T .
J PR TR kj ~ ‘ky’
(A-13)
= - ] - > ' = . - -J-. . ®
wj' - tJ wJ @50 JKJ JKJ kj

It is understood that xj and a_  are prescribed
funictions of t; these are the poiential displacements
which would exist in the absence of the mooring lines
for the same sea state.

To these relations we must add a kinematical
relation governing the orientation of the vectors ik'
For a rigid vessel the separation distances |5k|
are constant, however, the orientation is governed by
the vector angular velocity of the vessel, 6,
according to the relation

~

dp /dt = QX p_ . (A-1k)

The Cartesian components of Q are given by d¢j/dt.
Hence (A-14) can be expressed in the following component

form:
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(d/dt) ?;(2 = (d"[f'e-/dt) pk3 = (d\,‘;s/dt) Pko
(d/dt) pk2 = (d‘l‘a/dt) pkl - (d§’1 /dt') Pk3 >
and
(4/4t) Py = (dy, /dt) py, - (d¥p/dt) p,., - (A-15)

The restriction has already been imposed that the motions
of the vessel are smali. Consequwntly we may approximate
relations (A-15) by taking the mean values of the terms
pkj on the right hand sides and obtain by integration,
using (A-13):

pkl ! = (%.2 ! + az ) pk30 - (‘33 ! + aa ) pk2° 2
Pro' = (42" + a3) P1® - (B ' + ) Pk3° s (A-15)
pk3' = (*1 ! + a‘l ) pk2° = (“"2 ! + a?) p:..\:lo s

where

- o - \

o ol
and Py s denotes the mean values oI pk*'
o v

0 b £ porstiod Gabtreds 2

DO ekl OFT
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Finally to the above relations we added the following

geometrical relation for each line

-~ a

r, = R+ p, + Cy (A-18)

A

where LN is the radius vector from the anchor point of

line k to the point of attachment on the vessel, while

-~

Ck is a constant vector representing the radius vector
from the anchor point for line k to the fixed reference

point for the displiacement vector R. The above relation

can also be written in the form

. =Ao 61 “l 3 A-1
r n° + R' + Pt + A ( 9)
where rk? is the mean value of ;k .
We note in passing that the vector pk can be
written in the form
py = p° + (¢ +a) xp?o . (A-20)

This is consistent with (A-16) and (A-17).
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APPENDIX B. DERIVATION OF THE CHARACTERISTIC
FORM OF THE MOORING LINE EQUATIONS

The equations governing the local time rates of

v,V

changz of the dependent variables V 8, ¢, €, €,

v’ u’ 1—’

and €, are given by (103), (110), (111), (93), (94),
(95), (70), and (71), respectively. These equations also
contain the dependent variable T, however, we have the
diagnostic equation (69) relating T to €, € and e¢,.

We wish to recast these equations in the form

8 dQ_ :
) B —e— = P, B-1)
f1 t
along the path
ds =
-af = v o. (b-2)

Here the Qn signify the eight prognostic variables and
the quantities Bn’ P and € are functions of these
variables. In general there will be eight possible
values cf the speed C (not necessarily all distinct)

and eignht associated relations of form (B-1). All
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of the admissible values of C will be real if the
system of differential equations is hypertolic, which
is true in the present case.

First of all, we obtain from (69)

d€ de
%—";1 = Y (3;"5'5'0-) - K %E s (B-3)
where
Y = K eb(e ~ €) . (B-4)

This relation can be employed in (111) so as to eliminate
any dependency on derivatives of T.

In order to put the system of equations in the
form (B-1) with condition (B-2), we form a quasi-linear
combination of the original set in the following sense.
Multiply (109), (110), and (111) by b, by, and b,
respectively;, multiply (93), (94), and (95) by b,, b,
and bg respectively; multiply (70) and (71) by b, and
bg, respectively; and add the resulting equations. The
combination is guasi-linear in the sense that the co-
efficients b, through b, do not involve derivatives
of the dependent variables. After colilecting terms, the

result is:
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avv avv oV avu
by m' gp2 -0y 351+ [P Mt - b5 )

va bV'r S
{bgm 3zt - be gp= 1 + [by m' Vo - by Xe + (14 )b g

(-blT-b4VT+b6V_‘_)%g]

[ (- b m'Vucose-i-bzm'Xl-bsXasinG

bs (1 + €) sine)%%-i»(-bzTsine—i-b,,Vhsina

. d
b5X1+b6Vus:Ln6)-3%]

[0y 9% - by YL 1+ (b, F 40 1 )

d¢, d¢e,
[bea%—-*-ba Y-ES—-J = bl(WSin8+Gv)

by G, + b (-wcos 8 +G)+0 (¢-¢ -8)/n

bs S (T, &) - (B-5)




gL

and

In the above relation

189

X, = Vv cos 8 + V,r sin ¢ ,
= 'YV -
X, m VV m, Uv

= 1 -
X, = m Vp m, Uu

(F(T) - € )/To )

S(T, € ) =
0

ml

m+m,_.

The coefficients b,

selected such that

by, = -Cm*b ,
bs = -Cmnm' b, ,
bg = -Cm by ,
bg ¥ = -Cbg ,
by K, = C b, s
2 Y = C be s

if ¢, < F(T)

, 1if ¢, =z F(T)

throcugh b,

are to be

(B-6)

(B-7)

(B-8)

(B-9)

(B-10)
(B-11)
(B-12)
(B-13)
(B-14)

»
- Lot L LN
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‘o C(m'V_ b -X by +(1+c¢)bn,), (B-15)

and

AR

T

(- T sin 8 b, + Vu cos 9 by, - X; bg + Vu sin 8 b3)

(L BN R ) ot G T b1

= C ( - m"Vu cos 8 b, +m' X, b, -X; sin @ b,

+ (1 + ¢€) sin 8 bs). (B-16)

ARG R

The latter relations assure that each of the dependent

B variables, Q,, in (B-5) enters in the form .

Ry Ry

G +C3 )

: which is the same as dQ /dt along the line ds/dt = C.
Using (B-9), relation (B-15) can be simplified to

{0 the form -

(-Tb, +V,bg) = C (~X by + (I+¢)Db). (B-17)

TRV Ege ATy O 8T R bl TP
|
AR b o i s g St WA b s Wl
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Mcreover, using (B-9) and (B-19), reiation (B-16) can

g e P

be reduced to the form

TL R

(- T bz + Vu bs) == C (- Xa ba + (l + €) bs), (B-18)

15 provided that sin 6 does not vanish.

Since the eight homogeneous relations (B-C, through
(B-14) pius (B-17) and (B-18) contain eight parameters,
3 bn, plus an eigenvalue C, it follows that at least
one of the bn for given C is arbitrary. The eigenvalues
C can be evaluated as the roots of the eighth degree
polynominal in C fcund from the requirement that the
éé determinant of the coefficients in the simultaneous
i% system of equations for bn vanisiies. This determinant

in the present case contains mary zeros and can be shown to

lead to the following eighth degree polynominal:

C® (Y -Cm) (€2 ~' (L +€) -T)2 = O. (B-19)
1 Therefore, C® can have the possible roots
0, Y/m or T/m* (1 +¢€),

b the last having a multiplicity 6f two.
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For the case C?® = 0 we find that the relaticns for

bn are satisfied if b, =Dby =Db; =Dbg =15 =05 =0

-

for arbitrary b, and bg. Thus for one of the two roots
C =0, take b, =1, bg =0 and for the other take
b, = 0, bg = 1. This implies that we merely rscover
relations (70} and (71) in their original form, as might
have been anticipated, since they involve only derivatives
of £ anrd ¢, respectively.

For the case €2 T/t (1 + €¢), one possipble set of
bn are found to be b, =Dbs =b; =bg =b, =bg =0

with Db, arbitrary and b, given by
b, = -Cm'b, .

Thus if we take b, = 1, then

by = + | m' /(1 + €)]1/2

for (B-20)

c = + [T/m (1+e)]l/2.

A second possible set of b, for the case

2 = T/m' (1 + €) is found tobe b, = b, =b, = bz =

b, = bg = 0 with b, arbitrary and b, given by

T

s Mab e B

T I Al e W AT b

v et T
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by = -Cm'b,.
Thus with by =1 we get

b = FIm' T/ + €)1

for

C = + (T/m' (l+e)]1/2.

(B~21)

Finally for the case C?® = Y/m we get from (B-9)

to (B-14) with (B-17) and (B-18) the following relations

for the bn :

b = Cm, (V -T0,)/2,

= -C -9)/2
b, = -Cm, (Vl_1 Ju)/" ’
bs = 1 r)
by = Ym'm, (v, - G,)/mZ ,
b, = Ym'm (Vu - U'u)/mZ s
bs = -Y,/C,

b, = Kl/c >

b, = Y/,

(B-22)
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where )
c i_(Y/h)l/‘
and ~
' Fd
2 = Z={l+e)Y¥ -t (B-23)

Since the spring coefficient, Y, 1is generally much
greater than T, <the quantity Z is positive (even
when T 1is at or near its ultimate value).
The relations of form (B-1) foilow immediately
from the above results by substituion of the bn into
(B-5) for each particular C. In the case C = i_(Y/m)l/Q,
the terms involving de/dt, df/dt, and de,/dt can be

recollected using the relation

d

d
R £ CRES I A (B-24)

The resulting characteristic form of the mooring line
equations, making use of definitions (B-6), are those

presented in Section 4 of Chapter V.

. e e JEOSPRESIURIREDI UG - - - . e o —
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é APPENDIX C. TRANSFORMATION OF THE CHARACTERISTIC

EQUATIONS TO CARTESIAN FORM

; Using (88) gives the fcllowing relations between

i

g the natural and Cartesian velocity components d

L

g Vﬁ: = -V _sin§ + V& cos & ,

LR '

: VV = Vx COs § CcOs & + V& cos @ sin § - VZ sing ,

i (c-1) !

: . . . ;

_ 3

V‘r = Vx sin 8 cos § + V& sin g sin & + VZ cos § .

§ These are employed in (115), (116), and (117) to replace

av,/dt, AV /at, and 4V, /at by the time derivatives

of V, V,V, 8 and &.

E: - Now from the definitions given in (132) we find

' dg _ 48 _ &5 g8

P it = cos & cos @ Tt sin § sin ¢ 3T °

1 (C-2)

= Q‘.E = gﬂ i .g'j. }

; 3t = sin § cos g 5t + ¢os & sin 6 T - :

?; These relations are employed to eliminate dg/dt and %

EE‘ dé/dt by appropriate combination of the transformed i
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versions of {115), {(116), and (117). Finally using {132)
the coefficients involving sin 6, cos 8, sin ¢ , cos §
can be put in terms of g, B8, y. The resulting relaticns
are those given by (137) to (179). The last of these
was given in abbreviated form involving a reszidual term
+

§ . The complete form for {139 is as follows:

-

dV dV dV

-1/2 T

@, - wy)/m = (¥/m)' 2 (K (e - & -8)Nn

S )]+ {T MR L @, ¢ w/ETF ) (7, - U

m T

+ 6, (v -U)]-E (v, -U)dt+(V -U)N+

SRUVEIAE SPRCONEE LA ARE FHCD)

along ds/dt = i;(Y/h)l/Q.
The lengthy set of terms in braces represents the

+
residuai § . In this relation

2—' (L+e)Y - T. (c-1)

e e el

R AL

C ST R 1,
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Fortunately under normal conditions the residual
&i is of very minor consequence and can be neglected
for practical purposes. To justify this we note, first
of all, that Z is of the order of magnitude of Y.
Thus the terms involving G  and Gu are of the order

v
of magnitude

v, -1) -

— R

B'bm

where C" = (Y/m)l/Q. Under normal conditions we
would expect that (V_ - U ) is of the order of magnitude
of 10 ft/sec or less. However, C" is of the order of
10,000 ft/sec. Thus the above terms are negligible com-
pared with (G_ - Wwy)/m.

The terms involving dc/dt, dp/dt, and dy/dt

are of the order
" - dg
(cr/e™y (v - U) 5% »

where C' 1is the signal speed for transverse waves.
The ratio (C'/C")2 is of the order 1/100. If
(Vh - U ) ds/dt is of the order ade/Ht, then the

above terms can be neglected.
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;
i Finally, the terms involving dV/dt in the residual
-
3 i . s~ are of the order
: (v, - Un) av,
: c at
The ratio (Vn - Un)/C" is of the order 10-23, hence
these terms are negligitle compared with ¢ d Vx/dt,
g d Vy/dt, and vy d V_ /dt.
It wili be noted furthermore that ail of the
terms in the residual 5—'—"— are proportional to m, .
These terms would therefore not exist in the absence
of the fluid. The primary influence of the fluid is
. clearly on the transverse waves and not on the ;
; !
Py longitudinal waves. !
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APPENDIX D. MATRIX OF COEFFICIENTS FOR

THE NUMERICAL PREDICTION RELATIONS

The coefficients M _  and P~ of relations (154)
2

are given in the following pages. These are arranged in

order accoxding to n.

n = 1
¥, = {2 - [ (3, k1) + az(A1)]}/Bl,
M, = -[ald, k1) (3,0e1) + a(a) a(a )]s,
Mo = [ald k1) v{50) +alt) v(8)]y |

M, =-1,
M15=Mle=Mxv=M'xe=o:
8

B, ={2 Zim,m QA ) + [6,,(3,k41) + 6 (4,)

+ (e (L) v(3642) + alh) y(8))] ot m) /s,

B = {[ (1 + e(J,k+1)) T(Jj,k+l)/m*]/ 2

+ 11+ ea)) T8y )/ 2 )

S IER Y . T '
o =3 { [ s I * + ey e )
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L My = {2 - (o2 (3ke1) + a2(a)1}/8,

M, = - [a(dkel) 8(3,kel) +alh,) B(A) /B,

-
It

- ;:a(j,k+l) v(Jsk+1l) + o) Y(Az)j/‘Ba ’
Me =1,

M, =M, =M, =M, =0,

8
B, =12 ) Mo @ (A) + Gy, (4,k+1) + Gy (8)
m=1

+ w(a(J,k+l) Y(j:k‘*'l) + a(A) v(A)] 5t2/m'}/B,_ s

B, = {[(1 + e(d,kt1)) T(d,k+1)/m1] 2
$ 10T+ elhy) T(A) /Y 2}

rr T(j,k+1)

’ 1 Az s i T(Az) T/ 2]
C=3 imEy gy [t E T emy I}

2
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]

31 Mﬂa’ (Aa"Az):

Mo = {2 - [0 (5 kes) + 82 ()] /B,

Mys = = B(3s+1) y(500) + 8(8) v(&) /B, .

r

BolR ) Maa G () [y {a:ke2) + 6, (8,)
m=

+ w (83 k1) v(3,ke1) + 8(8) v(8 )] ot '}/,

et M SN TR N
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M2 (A4 =A2)

=
-
I

=
1)

42 {2 - [Ba (j:k+l) + Bz (}\'2)3}/-83
My = - [8(3H) v(d,ke1) + B(A) v(A;) |/Bo
44

45

M

48=O

M = Mvr

8
P, =2 Z
N m=1

M, Q (8,) + [Gny (3,3+1) + Gy (A;)
+w (83, k0) v(d,1) + (A) v(A))] st /m'} /B

and

e o - =

T R R A R ARt st 4 5
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: n_= > i
§ My, = [a(d,k+l) + a(hs)]/B l
%. Msa = [B(j’k'*'l) + B(As)]/Ba ;
] ;
E‘f b M, = Ly(3,k+1) + v(As)1/B,
r g
%_ M, = g = O
E Me = -1
;:
E.I
My, = X, = O
Bo={2 ) My (&) + [ (3k1) + G _(A)
m=1
- W (v(3:k41) + y(A;)) ] sty /m i
;—
-
- . — -
; + 0 | Fa,ke1) + F(ay) | 5t5} /B,
» B, =1/mcy, ¥ & (e - &0 - §) + S(T, &)
E y'l'1
2 o1 - .
| c! =3 | (Y(3,ke1)/m)V 2 + (Y(Bs)/m)V 2 i
| .
3
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i

(a(d,k+l) + a(Ag)]1/B,

[8(d,k+1) + B(Rs)1/B,

®
n
I

Maa = [Y(j:k'*'l) + Y(Ae)]/B4

85

My, =M,, =0

8
Pe =42 ) Moy Q () + te (3,ke1) + G (4,)

m='l

w(y(3,k+1) + y(8g)) ] ste/m

+ ¢y [F(i, k1) + F(a,)] st.}/8,

w
i

1/m C;

Cr = % | (Y(4,ks2)/mp) 2 + (Y(Bg)/m)V 2
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r M,y =M, =M, =¥, =M, =M= 0

3 Mg =1, M, =0

i P, = { [(1/e0nl¥(3,k+1) Y(5,K)] - €(,k) | at/2n
|

+ e(3,00} /(2 + at/2r)

E_.

n - 8

5 Mg, =My, =My, = Mg, =My = Mgg = O

1

‘* Mg, =0, MBB =1

¥ Po = {eo (3,K) + F(T(4,K)) at/ro}/(1+ at/r,)
. If & (3,k) < F(T(4,k))

)

’ Pg = €o(j:k).~ ir Go(j,k) > F(T(j:k)) .
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LIST OF SYMBOLS

Cross-sectional area of mooring line at
s, t; also used as an arbitrary constant

End point of characteristic line (Fig. 16)

Value of s/As for point A_;

3
Also used to denote norm=l aBceleration

Archemedian force on line
End poin* of characteristic line (Fig. 17)
Coefficients in characteristic equations

Race of change of the dynamic spring
coefficient with tension, see Eq (55)

I:terpolated relative time for point Bn

Signal speed (C' for transverse modes,
C" for longitudinal modes)

Transverse and longitudinal signal speeds
corresponding to conditions ¢f the mean
state of the line

See Eq (144)

Added mass coefficient

Drag coefficient (form drag)

Effective diameter of the line at s, t

Mominal diameter of the line in its original

unstrained state

Mean rate of energy dissipation by form drag

per unit material length of line
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dF _{w)
dHn(u))
dQ, (w)

Gv, Gy, G,
an’Gny
1 1
Gv’Gu
G(2)
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Stochastic, complex differentials employed
in Fourier, Stieltjes representations of
stochastic variables

Total mechanical energy per unit material
Jength of line

Elastic energy per unit material length of
line

Effective kinetic energy per .it material
length of line

Potential energy per unit material length
of line

Total fluid force on line

Saturation function giving ¢, vs T for
slow unidirectional straining

Fluid force per unit material length of line
Contribution to f due respectively to
static buoyancy, form drag, acceleration of
line relative to fluid and lateral thrust
due to vortex shedding

A scalar function of ¢

Coefficient in relation for G (Chap. IV),
see Eq (173)

That part of residual fluid force R not,
dependent upon 03%/0t, see Eq (105)or (1.06)

Natural components of G
X and y components of the normal part of G
Anomalies of Gv and Gﬁ’ see Eq (175)

Kernal function in an integral representation
for T, see Eq (73)
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Cco

Acceleration due to gravity

Hysteresis for a closed cycle (energy loss

per cycle per unit material length of line)

Hysteresis for an idealized process
Maximum value of H

Transfer function related to G(\)
Moments of inertia of veséel about its
principal axes for roll, pitch, and yaw
(§ = 1,2,3 respectively)

Unit vector in the x-direction a fixed
Cartesian frame of reference

/=13 also used to denote an integer

The negative of the torque exerted on the
surface vessel by mooring line k

Anomaly of J, from its mean value {J,°)

Cartesian components of J (j = 1,2,3)
The value 0 if a, < 0, N if a > N '

The integer truncation of the number &

Unit vector in the y-direction for a fixed

Cartesian frame of reference

An integer

Dynamic spring coefficient at zero tension,

see Eq (55)

Constants with units of load per unit strain
characterizing the elastic properties of the

line

- Apparent dynamic spring coefficient for

cyclic loading at frequency w
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-

Unit vector in the z-direction (upwards)
for a fixed Cartesian frame of reference

An integer; also denotes a complex wave
number %Chapter Iv).

Constants in the representation of the
damping characteristics for transverse
oscillations of the line

Original, unstrained length of 1li:
(s = L at point of attachment to v¢ ‘521,

Total mass of line (directly a function of

s)

The effective inertial mass of the surface
vessel for surge, sway, and heave

(i = 1,2,3 respectively)

Matrix of coefficients in the equations
for Q , see Eq (154) and Appendix D.

Mass of line per unit material coordinate

Effective added mass of water per unit
material coordinate

Mass of water displaced by iine per unit
material coordinate

m + my

Frictional coefficient ( = Kr) for line;
also an integer representing the maximum
number of intervals of s in the numerical
grid

Notation for anchor point of mooring line

Denotes a material point on the line; also
denotes period (=2r/u).

Forcing terms in the characteristic equations
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Forcing term in Egq (154), see Appendix D

Separation vector between center of mass
of vessel and point of attachment of mooring
line k (See Fig. 2)

Mean valuc of vector Py
Cartesian components of Py (j = 1,2,3)

Denotes any dependent variable of the
mooring line at s = .5 * - lLab

The set of dependent variabies defined by
Eq (152), n =1, 2. . .8

Cartesian components of the velocity of the
center of mass of the surface vessel

Residual fluid force ger unit material
coordinate, see Eq (18)

Anomaly of the translational displacement
of the surface vessel

Components of R' in surge, sway and heave
(3 = 1,2,3 respectively)

Position vector c¢c© a material point on the
iine with refererce to the anchor point

Position vector at point of attachment of
line k on the surface vessel

Mean value of rk

A function defined by Eg (119c)

Material coordinate, representing the arc
length between O and P 2in the original
reliaxed state of the line (a function of M
alone)

~

Vector tension in line at s, t (T = Tt)
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i; Value of & at ancho point
%k Value of % at point of attachment of li.ie %
k to surface vessel ;
’i‘k° Mean value of ‘E‘k ‘
%kj Cartesian co?ponents of &k (3 - 1,2,%) %
T, ' Anomaly of T, from its mean value (T,°)
T Scalar tension E
Td Dynamic tension for given ¢ and e, f
Ts Saturation value of T for given ¢, ‘
‘I'u Ulivimate strength of l1line i
T Mean value of T at s i
T! Perturbation of T from its mean value i
at s ;
t time
ﬁ Velocity of fluid (in absence of line) at s,t
ah That part of ﬁ normal to the line at s,t
UQ,U#,U* Natural comoonents of ﬁ “
Uk’Uj’Uz Cartesian components of U
ﬁx’ﬁ ’ﬁz Cartesian components of aﬁ/Bt )
% Velocity of line at s,t (B;/Bt) g
v Vo
Vv ,VH,V,r Natural components of % at s,t
VX,V'y,VZ Cartesian components of V at s,t i
v ',Vu',V ! Components of % in a natural coordinatc %

system defined by the mean configuration of
the line
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- F
- if v Effective mean value of the relative normal :
3 5% velocity, defined by =g (193) 4
-k W Net wcight of line in water per unit material

g; coordinate
. %% i

HorizontalCartesian coordinate in the plane of
the equilibrium configuration of the line (for
conlanar conditions)

Y The general spring coefficient dT/de, see

Eq (117c) or (321)
Y Value of Y corresponding to T and E
y Horizontal Cartesian coordinate normal Lo the

Coplanar equilibrium configuration of the line i
Z .See Eq (126) §
z Vertical Cartesian coordinate )

|

- :
a A vector denoting the potential rotatiomal ;

- displacement of the surface vessel

~

horcrme s wrve g

3 o s Cartesian components of o in rcll, pitch,
5! J and yaw (j = 1,2,3 respectively) -
N a A dummy variable to denote ¢ -_eo3 also used
- L to denote the x-component of ¢ .
3'; B.sBs't Damping factors pertinent to the six components
= J-d of motion of the surface vessel (3j for tran-~lation,
t Bj' for rotation, j = 1,2,3)
;% 8 The y--component of
§ B! The anomaly of g from its mean value
i ;
b T See Eq (107); also used in a different sense in %
Table 3
% Y The z-componert of 7
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Increment of s

Amplitude of T under cyclic loading

Uniform time step for numerical computation

An arbitrary phase angle

Dirac delta function

See page 196

Partial time step given by Eq (153c)

Longitudinal strain in the line at s,t
(defined by 90/9s -1)

Permanent strain (or passive analastic strain)

A partial strain referred to in the discussion

of the Maxwell model

Percurbation of ¢ from its mean valiue at

See: Eq (188)

S

Ratio of lateral thrust on line to drag force

~

Zenith angle cf «r,

Mean value of ¢ at

see Fig 15

s

Perturbation of € from its meaa at s

Real part of the complex wave number Kk for

transverse wave modes

Potential translational displacement of the

surface vessel

Cartesian component of A in surge, sway, and
heave (Jj=1,2,3 respectively)

See Eq (107)
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£

&

¥

|

& u Unit vector in the natural coordinate systiem

i -

| normal to 3 and Kk at s,t

(£ - .

‘2 Mo Mean orientation of pu at s

i ¥ ~ “ A

3 u' Departure of y from

u Imaginary part of the complex wave rumber K %

for transverse wave modes :

v Unit vector in the natural coordinate system :

normal to ¥ and 4 at s,t i

Vo Mean orientation of ' :

A ~ ~ g

v! Departure of y from v, T

v Imaginary part of the complex wave number for .

| longitudinal waves (in the absence of curvature) i
i v! Modified value of y for longitudinal waves in §
the presence of curvature of the line :

] g Active anelastic strain at s,t (its meaning ;

: is clarified by reference to Chap III, Sec. 2) i

i E Mean value of E at s j

i :

§ E!? certurbation of E from its mean at s ) E

] T 3.14159 |, . .

it p Average density of sea water (about 2 siugs

i per ft3)

-4

i o Actual arc length of line between O and P

H in the general strained state at time t
3 : 0.,0."! vominal natural frequencies for an unmoored
: & Jd vessel (o;, 0,, Oa' Dbeing zero)
= 1
i .

: 0,%,0,° Variance of V' and Vu' respectively at s v
L T Unit vectcr tangent to line at s, t :
3 To Mean oreintation of ¢ at s i
3 .t Departure of T from T, at s
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Characteristic relaxation times for the line
Azimuth of ;, see Fig. 15

Anomaly of the rotational displacement of the.
surface vessel

Cartesian components of &' in roll, pitch,
and yaw (j = 1,2,3 respectively)

Variance spectrum for Vv' at s =1L
Variance spectrum for Vu' at s =1L
Variance spectrum for V,' at s =1
Cartesian components of the anomaly of angular
velocity of the surface vessel (i = 1,2,3
respectively for roll, pitch, and yaw)

Radian frequency

Spectral mean value of |, see Eq (248)

Strouhal frequency
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